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Abstract—Loop closing in vision based SLAM applications
is a difficult task. Comparing new image data with all previous
image data acquired for the map is practically impossible because
of the high computational costs. This problem is part of the
bigger problem to acquire local geometric constraints from
sensor data for geometric map building termed data association.
Commonly the computational costs are kept small by sampling
the image data uniformly over time or using a position estimate
from a mapping and localization algorithm. In this paper we
propose a more natural sampling approach, by determining a
subset that best describes the complete image data in the space
of all previously seen images. The actual problem of finding
such a subset is called the Connected Dominating Set problem
which is well studied in field of graph theory. The proposed
method is particularly beneficial for realistic mapping scenarios
including moving objects and persons, motion blur and changing
light conditions. Evaluation on multiple large indoor datasets
show that the method performance is very close to that of
an exhaustive data association scheme and outperforms other
sampling approaches.

I. INTRODUCTION

In the field of SLAM many effort has been devoted to

efficiently and consistently computing a global metric map

from local geometric constraints [1]. However, most of the

theoretical results are based on the assumption that the data

association problem to compute these local constraints is

solved.

Perfect data association involves finding for each new sensor

reading, all the previous sensor readings that were added to

the map that correspond to it. However, the effort necessary

to find all these corresponding measurements grows linearly

while the map is growing, making perfect data association

practically impossible for realistic mapping scenarios. And

even with a very robust matching technique, ambiguities will

always exist due to similar sensor readings in different parts

of the environment. Solving these ambiguities is addressed by

Rao Blackwellised Particle Filters [2] and the MCMC based

approaches that search in the space of topological maps [3].

In this paper we focus on the first problem: efficiently finding

for each new sensor reading the corresponding previous sensor

readings in a growing map.

In general it is not possible to compare new measurements

with each previous measurement of the map because it would

cost to much computational time. Instead a choice should

be made which measurement of the map to consider for

matching. This can be seen as a sampling problem in which

we have to pick samples from the map given some distribution.

Commonly some simple heuristic is used, for example by

looking at which time previous measurements were added

to the map and sampling uniformly over them in the time

domain. In this paper we argue that by using the knowledge

of previously matching measurements, we can sample a set

of key measurements that best covers the map in the space

of the measurements themselves. This sampling is performed

by regarding the previously matching measurements pairs as

a graph and use a technique from graph theory termed the

Connected Dominating Set (CDS)[4], to find the a minimal

set of key measurements that still represents all measurements

in the map[5].

In this paper we focus on vision based SLAM, because

image matching is known to be computationally expensive.

However, the proposed CDS method can just as well be

applied to SLAM methods based on other sensors such as

laser range scanners.

In particular we focus on view based SLAM [1], in which

the so called map consists of a trajectory of robot poses

with their corresponding images, or views. In view based

SLAM data association involves matching each new image

with previously shot images, as opposed to landmark based

SLAM, in which features extracted from the new image are

matched with 3D landmarks in the map. The vision sensor that

is used in the experiments is a single viewpoint catadioptric

vision sensor which can capture images with a very wide field

of view. However, all methods discussed in this paper could

just as well be applied to conventional cameras.

The rest of the paper is organized as follows. First, in

Section II, related work is discussed, focussing on how vision

based mapping methods choose which parts of the map to

match with. Then, in Section III, we propose a new data

association approach based on the CDS. In Section IV we

briefly explain the lower level image matching technique used

in the experiments. In Section V the proposed method is

evaluated on multiple challenging datasets, mostly acquired

in real home environments.

II. SAMPLING METHODS, RELATED WORK

Sampling always has to be done to bound the computational

time spend on data-association. For vision based mapping

applications there is an implicit bound given by the frame

rate of the camera. Although standard cameras have a frame

rate of 30 frames per second. for indoor environments with

low brightness this is usually lower due to the higher shutter

times needed to capture enough light. For mapping very small

environments this reduction in the number of images could be



enough to perform full data association in real time. For larger

environments it is not uncommon to drop most frames and for

example only pick one per second [6]. This is troublesome in

applications where robots stand still for long times, as usually

is the case for robots interacting with humans such as museum

robots.

Another straight-forward sampling method specifically used

in view based approaches is to sample over the area that is be-

ing mapped [7][8]. This is commonly done by using odometry

measurements. This method fails in non static environments,

where, for example, light changes occur or objects or humans

move, while the robot is standing still. Also, in small places

such as corridors and door openings, the appearance changes

relatively faster given the movement of the robot than in big

convex spaces such as a big room.

A somewhat more sophisticated method is to pick sensor

readings given some quality measure. For example, to keep

the map small and reducing the risk of adding non-stationary

image features, such as reflections and shadows, landmark

based approaches usually add just a few landmarks with high

distinctiveness per frame to the map [9]. As a result most

computational cost of corresponding new feature result from

corresponding them with parts of the environment with a lot

of distinctive features, while only a little from corresponding

to parts of the environment with a relatively low number

of distinctive features. This is a quite undesirable effect.

Detecting loop closure in texture rich parts of the environment

is easy, while loop closing in texture poor parts needs extra

effort. In this paper we argue that feature poor parts should

be represented with relatively more features instead of less.

In SLAM applications new robot positions in the map can

be predicted given the motion model. It is very common to

use this so called navigation prior to define parts of the map

for data association [10, 9]. There are a few fundamental

drawbacks with this approach. Due to linearization errors

SLAM methods are usually overconfident. Because of this

crucial loop closing observations could be missed, because

they are deemed close to impossible by the current map. In

general the resulting dependence of the landmark observation

on the map is neglected, leading to an even more overconfident

state estimate.

There have also been approaches that sample in image

space. A common scheme to find a set of key images is to first

cluster the complete set of images based on an image similarity

measure and then for each cluster choose one representative

key image [11, 12]. However, solving a clustering problem is

actually a more difficult problem than the problem at hand.

In [13] finding clusters is simplified by using the temporal

distance with which the images were taken The drawback

of grouping images on the basis of temporal distance is that

all images taken from the same place but at a different time

are put in a different group, producing probably quite similar

prototype images. Indeed one of the assumptions in [13] is

that each location is visited only once.

Sampling images based on an image similarity measure has

however some very nice advantages. Parts of the environment
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Fig. 1. Figure explaining the rationale of using the Connected Dominating
Set method. The circles denote robot poses and the links connecting them
indicate that the images taken at the robot poses match. Grey circles indicate
CDS nodes. The robot moves from robot pose A to a new robot pose B,
which has to be associated with the map.

where images have a low similarity will directly be represented

by more key images. This is for example the case places with

bad or changing lighting conditions, but also in places where

their are a lot of moving objects or humans. Images taken by

the robot while standing still will be highly similar as opposed

to images taken while driving fast. In this paper we describe

an algorithm that uses such a sampling method. As opposed

to known methods that sample in image space, the proposed

method does not use clustering but determines a set of key

images directly.

III. SAMPLING BASED ON IMAGE SIMILARITY

The map of the View based SLAM approach consists of

the complete set of past robot poses and their corresponding

images. In this section we propose a method to efficiently

perform data association given such a map and a new image

without performing an exhaustive search. We first explain

how a set of key images is determined using the Connected

Dominating Set. Then these key images are used to define a

practical and efficient data association scheme. We assume that

a similarity measure is defined that can takes two images and

computes if they are similar or not. Later in Section IV we

briefly describe the similarity measure used in the experiments

A. The Connected Dominating Set

We assume that we already mapped part of the environment

and found pairs of robot poses for which the corresponding

images matched. The problem now is to compute a minimal

set of key images that best describes the complete image set,

given the set of matching image pairs.

See Figure 1 for an example scenario. Suppose the robot

moves to a position B close to a previous robot position C. If

the world is more or less static, then a newly captured image

at B looks a lot like the image taken at C. Thus the new

image taken at B probably also matches all the images that

matched the image taken at C. To localize oneself in the map

it suffices to compare the new image taken at B with only one

of these matching images taken at D, E or F . Thus only one

of these images has to be marked as key image and the rest

can be ignored.



Of course this holds for all possible previous robot positions.

It would suffice to compare the new image with a subset of key

images which has the property that every image is either a key

image or matched a key image. This is exactly the definition of

the Connected Dominating Set (CDS), a concept originating

from graph theory, which is commonly used for broadcasting

in large networks[4].

The set of image pairs in the map can be seen as a

graph G = (V, S), in which a node v ∈ V represents an

image and a link (u, v) ∈ S between represents that the two

images that correspond to node u and v match. A Connected

Dominating Set V ′ is defined as follows. The set of nodes in

the Dominating Graph V ′ is a proper subset of the original

set V , such that every node u in the original set V is either

in the Dominating Set V ′ or is neighboring a node in V ′:

∀u ∈ V : u ∈ V ′
∨ ∃v ∈ V ′ : (u, v) ∈ S (1)

The problem now is to find a CDS with the minimal number

of nodes so to compare as few images as possible. This task

is however known to be NP-complete. Fortunately algorithms

exist that can find a good approximation in the order of the

number of nodes [4]. Most of these algorithms first remove

links to make a spanning tree with as many leaves as possible

and then define the set of all non-leaves as the CDS.

We implemented an algorithm as proposed by Guha [4] that

iteratively finds CDS nodes in a connected graph (see [4] for a

complete description of the algorithm). The computation time

of the algorithm is negligibly small as compared to the time

needed for the actual image matching. For the datasets used

for evaluation the computation time was always smaller than

1 ms.

B. Data association scheme

For each new image that is taken by the robot a new

CDS is determined. Comparing the newly taken image with

the images in the CDS, results in some extra image pairs,

but more importantly it indicates where to look for more

matching images. To determine as much matching image pairs

as possible, the new image is compared with all the images

that match matching CDS images. Thus in the example of

Figure 1 if the new measurement B matches CDS node E,

then B is also matched with C, D and F.

In case the robot always revisits previous locations then

the CDS method returns the approximately optimal subset for

localization. If the robot, however, drives through a corridor

it could happen that it can not match any of the images in

the CDS. Therefore, we do not only compare with matching

images of matching CDS images but also those of all CDS

images that matched the previously taken image.

IV. COMPARING IMAGES

This section briefly describes the matching technique used

to compare two images taken by the omnidirectional vision

system used in the experiment section. The method is based

on matching local image features and imposing the epipolar

constraint [14].

Images taken by the omnidirectional vision sensor are first

mapped to panoramic images to be able to apply conven-

tional computer vision techniques [15].Salient image points,

or feature points, are found in the images by applying the

Scale Invariant Feature Transform (SIFT)[16]. These salient

points are described by a standard SIFT descriptor of 128
dimensions. Salient points that have a small Euclidean distance

in descriptor space to other salient points in the same image

are removed.

A set of point correspondences between the two images

is determined by computing the two nearest neighbors of

every salient point. Two points match if the ratio between

these two neighbors is larger than 0.8. This is the standard

matching scheme as described in [16]. The number of point

correspondences could be used to determine if the two images

depict the same part of the environment. However, the set will

also include mismatched image points pointing to different 3D

landmarks.

The point correspondences that are the projections of the

same 3D point in the environment are constrained by the

epipolar geometry[17]. This epipolar geometry is formally

described by the Essential matrix E that relates the projections

of landmarks as 3D points li and ri on the camera surfaces:

l
T

i
Eri = 0 for all i, (2)

For omnidirectional vision li and ri are usually obtained by

normalizing the 3D light rays, corresponding to the pixel

coordinates, to unit length, effectively projecting them on a

sphere[15, 18].

The 3x3 matrix E is estimated using a variant of the 8-

point algorithm[19], for which the constraint is added that the

camera moves over a planar surface[20]. This algorithm is

used inside the RANSAC robust estimator, which estimates

the epipolar geometry and at the same time determines the

number of fitting point correspondences[19, 21]. A point

correspondence fits E if the Sampson distance is below a

certain threshold which can be estimated from the data (we

used 0.01) [19, 21] and the corresponding 3D world point has

a positive depth in both cameras[22].

The number of remaining mismatches, fitting E, is propor-

tional to the total number of features found in the two images.

If the number of fitting point correspondences normalized by

the lowest number of features found in the two images is larger

than a threshold set to 0.10, then the images match.

V. EXPERIMENTS AND RESULTS

In order to evaluate the proposed CDS data association

method we applied it on several datasets, one ”office set”

acquired in our university building and three ”home sets” taken

in real home environments 1. For all these datasets, including

the one taken at the university building, the conditions were

far from ideal ”lab conditions”.

1All the used datasets, including images, odometry, sonar and laser range
data (all timestamped), are available from http://www2.science.uva.

nl/sites/cogniron/.



Fig. 2. Example image from the office data sets.

The office dataset shows how the proposed method copes

with a robot traversing the same loop in the building twice.

The application of the method on the home environment

datasets evaluate the robustness of the method. Although home

environments typically have more visual texture resulting in

more image features, the dynamic light conditions make image

matching hard.

In addition the CDS sampling method is compared with

other sampling methods based on time, displacement of the

robot and a randomly picking a subset.

Except for the third home set all datasets were acquired

using a tele-operated Nomad Scout mobile robot platform,

which was equipped with an omnidirectional vision system,

consisting of an Accowle convex hyperbolic mirror and a one-

megapixel Firewire video camera. The third home set was ac-

quired using Biron (the Bielefeld Robot Companion) equipped

with the same omnidirectional vision system. The computer

vision and data association algorithms were implemented in

C++ and were running on a 2Ghz laptop mounted on the robot.

A. Office dataset

The office dataset was kept relatively small so we are still

able to apply an exhaustive full data association corresponding

each new images with all previously seen images in the map

for evaluation purposes. The environment consisted of a small

loop through two rooms and a small part of a hallway. The

robot was driven over the loop two times, see Figure 3(a),

taking in total 877 images. See Figure 2 for and example image

taken by the omnidirectional vision system.

Figures 3 visualizes the results of the proposed data asso-

ciation step in two ways: a connectivity graph, linking the

matching images and using the odometry information for the

position of the image-nodes, and a connectivity matrix, which

clearly shows the loop closing observations by the off-diagonal

non-zero values.

In total 74,585 image pairs were matched in 303 seconds

resulting in 31,199 links. See Table I for an overview of the

datasets and their computational time usage. In Figure 4 a

more detailed plot of the computational time usage of both

the CDS method and the full data association is shown The

exhaustive data association scheme resulted in 32,583 links,

only 4% more than the efficient CDS method while comparing
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TABLE I

COMPUTATIONAL TIME USAGE FOR THE CDS METHOD.

Dataset N matched links false total time average(std)

Office 877 74,585 31,199 0% 303 s .34 s (.25)

Home 1 1153 93,789 42,529 0% 850 s .74 s (.52)

Home 2 1845 192,876 72,240 0% 1,359 s .73 s (.53)

Home 3 1734 267,465 105,843 3% 934 s .53 s (.45)

5 times more image pairs. See Table II for an overview of the

exhaustive data association scheme compared to the proposed

method.

While mapping the environment, more and more images

acquired at different positions are added to the dataset and thus

the size of the CDS grows. This is depicted in Figure 5. At

image 507 the robot finished its first loop in the environment

and had a CDS size of 30 images. During the second traversal

of the loop new images were matched with images taken in the

previous loop, creating links between these images as shown

in Figure 3(a). Because of these links only a few extra nodes

were added to the CDS during this second loop resulting in

a total of 37 nodes in the final CDS (which are indicated

in Figure 3(a). This is exactly what should be expected if

sampling in image space. Each key image represents images

taken in both traversals of the loop.

TABLE II

COMPARISON OF EXHAUSTIVE AND CDS DATA ASSOCIATION.

Dataset Full CDS CDS/Full

matched links matched links matched links

Office 384,126 32,583 74,585 31,199 19% 96%

Home 1 664,139 43,091 93,789 42,529 14% 99%

Home 2 1,701,108 74,037 192,876 72,240 11% 98%

Home 3 1,502,511 113,555 277,528 106,111 18% 93%



-2

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9

m
et

er
s

meters

(a) Connectivity Graph

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  100  200  300  400  500  600  700  800

(b) Connectivity Matrix

Fig. 3. Results of applying the CDS data association method on the small dataset. (a) shows the graph, in which the nodes corresponding to the images
are denoted by small circles, and the links by lines connecting the circles. The nodes are positioned using the raw odometry readings. Bigger green circles
denote the nodes that were in the final CDS. (b) shows the connectivity matrix of the graph, with a darker color for image pairs with a higher similarity. The
of-diagonal non-zero entries denote places where loop closure occurred. Note that at image 507 the robot started driving over the loop a second time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  100  200  300  400  500  600  700  800

C
D

S
 s

iz
e

# images

Fig. 5. The number of nodes in the CDS, while the map is growing. The
vertical dashed line indicates the beginning of the second traversal of the loop.

Also interesting is the distribution of key images (see

Figure 3(a)). Some areas of the environment such as the

upper part are represented by only 4 key images, although

the trajectory was driven 4 times, while other, much smaller

areas, such as at the middle right, are represented by 6 key

images. This is a direct result lighting differences between

those areas, the second area being much darker than the first

area.

B. Real home datasets

The CDS method was also tested on three challenging

datasets acquired in real home environments. To get an idea of

the structure of these homes see Figure 6. Some typical images

captured by the omnidirectional vision system are shown in

Figure 7. For a detailed description of the acquisition of these

datasets see [23].

The first home dataset, consisting of 1153 images, is taken

in a relatively feature rich home environment. However, the

images were shot in the evening, resulting in somewhat dark

images and more importantly some motion blur, because of the

(a) Home 1, a student apartment

(b) Home 2, the Unet demo house

(c) Home 3, demo house from the Bielefeld Univer-
sity

Fig. 6. Ground floor maps of the home environments. The position of the
furniture is approximate.



higher shutter times needed to capture bright enough images.

The second home dataset, which consisted of 1845 images,

was taken during day time in a less feature rich home. While

the robot was driving around people walked in close vicinity

to the robot. Home 3, consisting of 1734 images, is the most

difficult. The environment has a relatively low amount of

visual texture and the dataset was shot in the evening. Also

the robot was heavily loaded, resulting in some additional

motion blur. See Figures 7 for some example images of all

three datasets.

In Table I and Figures 8 the results of the data association

method are given in a similar fashion as for the office set.

For all three datasets the computational time of the complete

data association was fairly constant during map building at .7
seconds. For Home 3 it was somewhat less due to the lack of

features, resulting from the bad lighting conditions. This was

also the cause for the relatively high number of false positive

image matches which can clearly be seen in Figure 8(e). By

visual inspection we found that 3% of the matched images

was actually false for Home 3. The other datasets did result

in any false match.

As with the office set the results are compared with an

exhaustive data association scheme, matching all images with

each other. Again the same pattern is visible: the efficient CDS

method finds almost all matching images, while doing 5 to 10

times less comparisons, see Table II. The percentage of false

negatives is around 4%.

It is interesting to investigate the distribution of the key

images over the complete set of images and the position from

which they were taken. We highlight some of the specific

characteristics of sampling in the space of images by looking

into some parts of the home environments.

In Home 1 we see that relatively more key images are

located in the middle to left part of the house than at the

right side (see Figure 8(a). One of the reasons is that in the

left part there are fewer objects and less visual texture. But

another important reason is that on the left side the robot

made relatively more turns resulting in more motion blur in

the images. Compare Figures 7(a) and 7(b) which were taken

in the left respectively right side of the house.

The dataset taken in Home 2 was shot during day time

and most light was coming in through the windows at the top

of Figure 8(c) (see also Figure 6(b)). However, some areas,

such as the small entrance hallway at the bottom center were

located far away from these windows and were as a result quite

dark. Compare the images in Figures 7(c) and 7(d) taken at

a dark and a bright area. The implication for the sampling in

image space is that relatively few key images are necessary to

represent the top left as compared to the bottom center.

In both previous examples it was also the case that the space

in which the feature poor images were taken was smaller than

the space in which feature rich images were taken. Indeed

when landmarks seen in the images are closer to the moving

robot the view angle changes more quickly and it is more

difficult to match these images. In Home 3 we see a more

isolated example of this phenomena. Compare Figures 7(e)

(a) (b)

(c) (d)

(e) (f)

Fig. 7. (c) (d) (a) (b) (e) (f)

and 7(f) which were shot in a small hallway and the big

living room respectively. Both spaces are quite feature rich and

have comparable lighting. However, 6 key images represent the

small hallway while only 3 represent the big living room.

C. Comparison of sampling techniques

The investigation of the distribution of the key image over

the tested datasets suggests that sampling in the space of

images results in a subset of key images that better represents

the complete set, and is thus more suitable for data association

tasks. In the following we compare the proposed method with

other methods to pick key images of the Home 1 dataset. To

make the comparison as fair as possible we set the sampling

density for each method such that the number of images-pairs

that is evaluated is more or equal to the number of image-pairs

evaluated by the CDS method. Thus the CDS method will use

less or equal the amount of computational time. Other than the

sampling technique the data association method is completely

the same.

As a baseline the first method just picks images randomly

from the seen images. During each iteration a new set is chosen

with an average number of images equal to .07 times the

number of images in the map.

The second method uses the odometry measurements to

sample over displacements of the robot. After each 54 cm

an images is added to the set of key images.



TABLE III

COMPARISON OF DIFFERENT SAMPLING METHODS.

method key images links false neg links/matched

Full - 43,091 - 6%

Random 83 32,509 25% 33%

Position 64 37,382 13% 39%

Time 61 38,623 10% 39%

CDS 40 42,529 1% 45%

The third approach samples images over time. After each 5
seconds a mapped image is added to the set of key images.

In Table III the CDS method is compared with these

methods and the method of exhaustive data association. As

can be seen the proposed CDS method outperforms all these

sampling techniques. The set of key images is smallest for the

proposed method. More importantly it finds by far the highest

number of links, close to the number found by exhaustively

searching. As a result the percentage of successful image

comparisons (links/match) is highest of all methods, including

of course that of a full matching scheme. Although we did

investigate the number of mismatches that were made, except

for the CDS method, the percentage of successful comparisons

does indicate that the proposed method is more robust against

false positives.

VI. CONCLUSION

In this paper we proposed an efficient data association

approach for view based SLAM that determines a set of

representative images by sampling in image space using an

image similarity measure. We have shown that the problem

of finding the minimal number of key images given a set

of previously matched images is equivalent to finding a

minimal Connected Dominating Set. The method is applied

on four challenging datasets mostly acquired in real home

environments. It outperforms known sampling techniques by

finding in the same amount of computational time much more

matching image pairs, on average 96% of the matches found

by an exhaustive search.

Although in the experiments the CDS method was used

stand alone, it could just as well be merged with other

sampling techniques, for example using the navigation prior

of a SLAM method. Also the efficiency of the CDS method

could be even further improved by additionally using a more

efficient image similarity method like the recently proposed

hierarchical methods[24] or the bag-of-words methods that use

training sets to learn how discriminative image features are.

In the experiments we used a similarity measure that is

based on the epipolar constraint, so it is clear to see how this

data association method can be used in a complete view based

SLAM system [25]. In [26] an experiment is shown in which

the CDS method is used to build a map with more than 10,000

images.
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Fig. 8. Results of CDS data association method. (a) and (b) are the resulting graph and the connectivity matrix for the Home 1, (c) and (d) for Home 2 and
(e) and (f) for Home 3. The graphs were plot using hand-corrected odometry information for Home 1 an 2 and using the result of Laser-SLAM for Home 3.
Green circles denote the images of the final CDS. Lines were drawn between poses to denote that the images corresponding to the two robot poses matched.
By using the zoom functions of a PDF reader parts can be magnified to fully respect the number of found image matches, (for Acrobat 8.0 turn off Line
Weights, for Acrobat 7.0 turn on Wireframe). The connectivity matrices give another view on the results. The entries on the main diagonals are the result of
matching sequential images, while the off-diagonal entries reflect instances of loop-closing.


