Sampling in image space for fast view based mapping

Olaf Booij, Zoran Zivkovic, Ben Kröse

Intelligent Systems Lab Amsterdam University of Amsterdam, The Netherlands

SOOS 09-09-2008

Outline

View based mapping

Sampling

Connected Dominating Set

Results

Wrap up

Outline

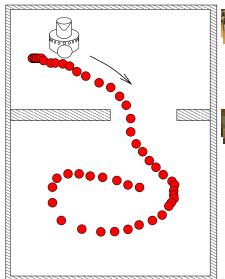
View based mapping

Sampling

Connected Dominating Set

Results

Wrap up

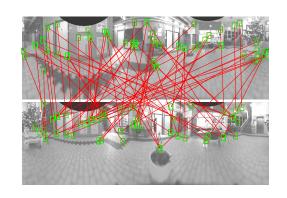


Comparing Images - computing a similarity

- Local image features are compared
- Use the epipolar constraint to find mismatches

$$\mathbf{a}^T E \mathbf{b} = 0$$

Similarity $\equiv \frac{\# \textit{matches}}{\# \textit{features}} > \theta$



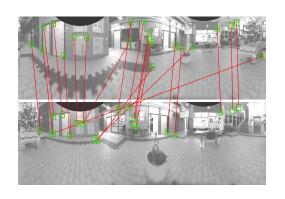
Comparing Images - computing a similarity

- Local image features are compared
- Use the epipolar constraint to find mismatches

$$\mathbf{a}^T E \mathbf{b} = 0$$

► Similarity

≡ #matches
#features > θ

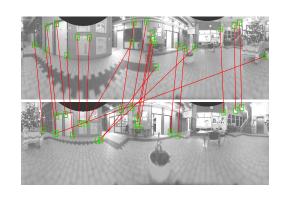


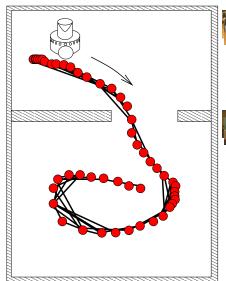
Comparing Images - computing a similarity

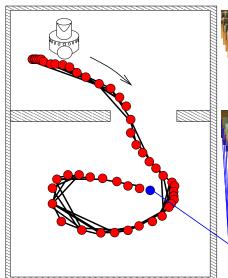
- Local image features are compared
- Use the epipolar constraint to find mismatches

$$\mathbf{a}^T E \mathbf{b} = 0$$

Similarity $\equiv \frac{\# \textit{matches}}{\# \textit{features}} > \theta$







Outline

View based mapping

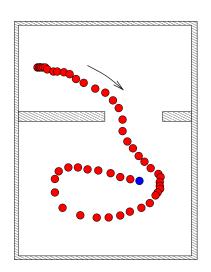
Sampling

Connected Dominating Set

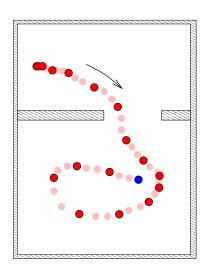
Results

Wrap up

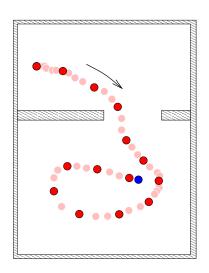
- ▶ In the time domain
- ▶ In the 2D/3D space domain
- Using a navigation prior
- ▶ In image space



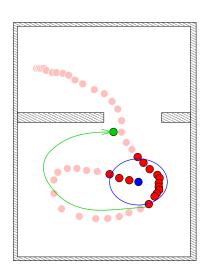
- ▶ In the time domain
- ► In the 2D/3D space domain
- Using a navigation prior
- In image space



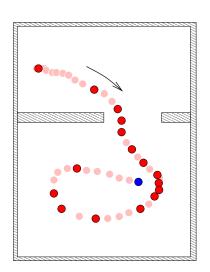
- ▶ In the time domain
- ▶ In the 2D/3D space domain
- Using a navigation prior
- In image space

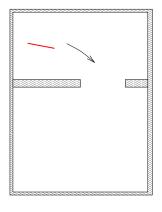


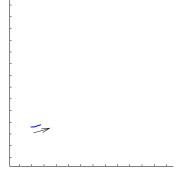
- In the time domain
- ▶ In the 2D/3D space domain
- Using a navigation prior
- ▶ In image space

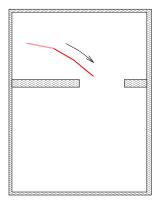


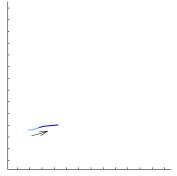
- In the time domain
- ▶ In the 2D/3D space domain
- Using a navigation prior
- In image space

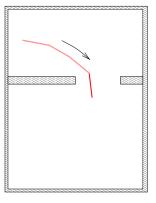


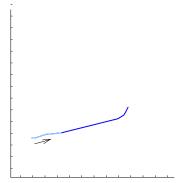


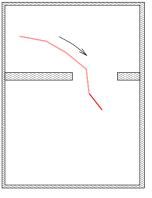


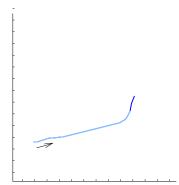


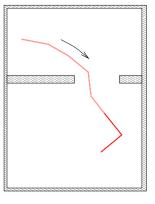


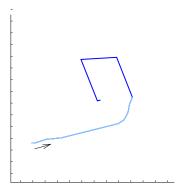


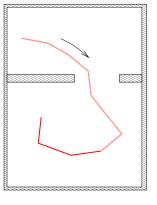


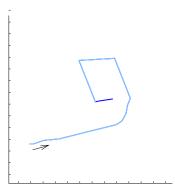


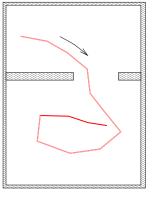


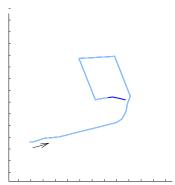












- Narrow passages, convexity of space
- Texture rich/poor areas
- Dark/brightly lit areas
- Dynamic lighting / moving objects
- Standing still
- **.**..

- What is this "image space"?
- ightharpoonup We only have an image similarity measure \neq proper metric.
- ightharpoonup use the topological structure.

- What is this "image space"?
- ▶ We only have an image similarity measure ≠ proper metric.
- ightharpoonup use the topological structure.

- What is this "image space"?
- ▶ We only have an image similarity measure ≠ proper metric.
- ightharpoonup use the topological structure.

- What is this "image space"?
- ▶ We only have an image similarity measure ≠ proper metric.
- ightharpoonup use the topological structure.

Outline

View based mapping

Sampling

Connected Dominating Set

Results

Wrap up

Picking key images

- Cluster and choose one image/cluster
 - ► How many clusters?
 - Are we doing too much?
- Connected Dominating Set

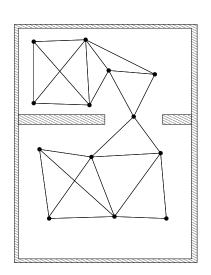
Picking key images

- Cluster and choose one image/cluster
 - How many clusters?
 - Are we doing too much?
- Connected Dominating Set

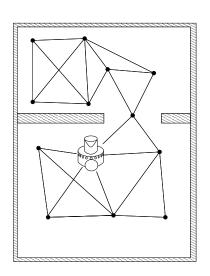
Picking key images

- Cluster and choose one image/cluster
 - How many clusters?
 - Are we doing too much?
- Connected Dominating Set

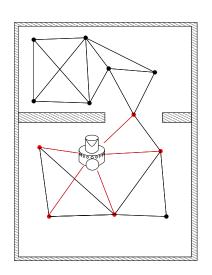
- What if the robot is nearby a visited pose
- New image matches with all its neighbors in the graph
- Without the node the robot can still match
- Which other nodes can be left out?



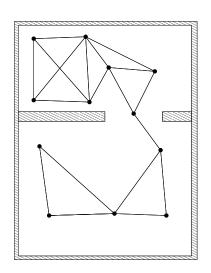
- What if the robot is nearby a visited pose
- New image matches with all its neighbors in the graph
- Without the node the robot can still match
- Which other nodes can be left out?



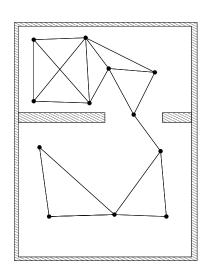
- What if the robot is nearby a visited pose
- New image matches with all its neighbors in the graph
- Without the node the robot can still match
- Which other nodes can be left out?



- What if the robot is nearby a visited pose
- New image matches with all its neighbors in the graph
- Without the node the robot can still match
- Which other nodes can be left out?



- What if the robot is nearby a visited pose
- New image matches with all its neighbors in the graph
- Without the node the robot can still match
- Which other nodes can be left out?



A CDS of a graph is a subset of nodes with the property:

Each node of the original graph is either in the CDS or is linked to some node in the CDS

$$\forall n_1 \in \mathsf{Graph} : n_1 \in \mathsf{CDS} \vee \exists n_2 \in \mathsf{CDS} : (n_1, n_2) \in \mathsf{Graph}$$

We want a CDS with the minimal nr of nodes

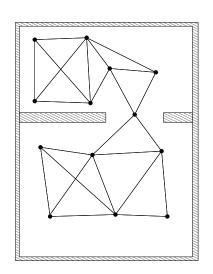
A CDS of a graph is a subset of nodes with the property:

Each node of the original graph is either in the CDS or is linked to some node in the CDS

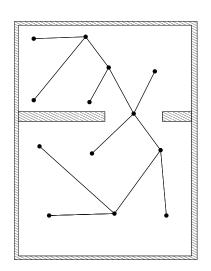
$$\forall n_1 \in \mathsf{Graph} : n_1 \in \mathsf{CDS} \vee \exists n_2 \in \mathsf{CDS} : (n_1, n_2) \in \mathsf{Graph}$$

We want a CDS with the minimal nr of nodes

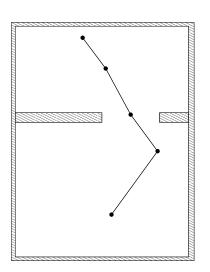
- ► Compute spanning tree with maximum nr of leaves
- ▶ Trim the leaves
- As always: NP-complete but approximations exist



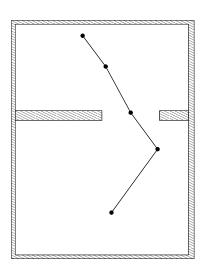
- Compute spanning tree with maximum nr of leaves
- ▶ Trim the leaves
- As always: NP-complete but approximations exist



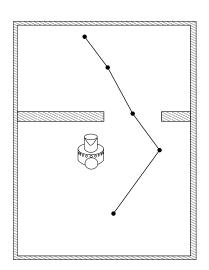
- Compute spanning tree with maximum nr of leaves
- Trim the leaves
- As always: NP-complete but approximations exist



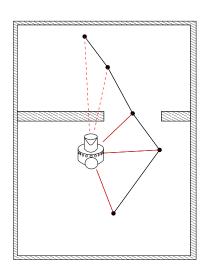
- Compute spanning tree with maximum nr of leaves
- Trim the leaves
- As always: NP-complete but approximations exist



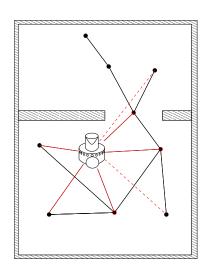
- Compute CDS key images
- Take a new image
- ▶ First match with key images
- Match with neighbors of matched key images
- repeat.



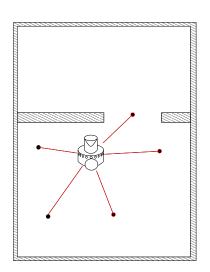
- Compute CDS key images
- ▶ Take a new image
- First match with key images
- Match with neighbors of matched key images
- repeat.



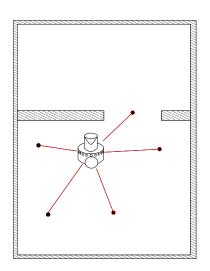
- Compute CDS key images
- Take a new image
- First match with key images
- Match with neighbors of matched key images
- repeat.



- Compute CDS key images
- Take a new image
- First match with key images
- Match with neighbors of matched key images
- repeat.



- Compute CDS key images
- Take a new image
- First match with key images
- Match with neighbors of matched key images
- repeat.



Outline

View based mapping

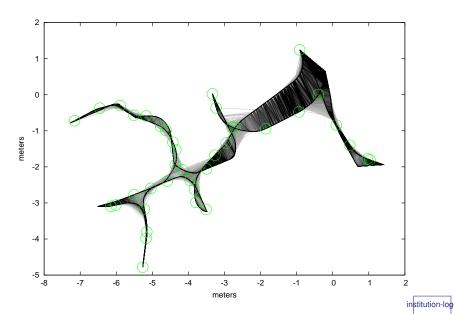
Sampling

Connected Dominating Set

Results

Wrap up

Dataset	#Images	#pairs	#links
Office	877	384,126	32,583
Home 1	1153	664,139	43,091
Home 2	1845	1,701,108	74,037
Home 3	1734	1,502,511	113,555



Overview computational cost

Dataset	#comparisons	#matches	time	time/im
Office	74,585	31,199	303 s	.34 s
Home 1	93,789	42,529	850 s	.74 s
Home 2	192,876	72,240	1,359 s	.73 s
Home 3	267,465	105,843	934 s	.53 s

Comparison with other sampling methods

method	key images	#links	false neg	links/matched
Full	-	43,091	-	6%
Random	83	32,509	25%	33%
Position	64	37,382	13%	39%
Time	61	38,623	10%	39%
CDS	40	42,529	1%	45%

Online interactive topological mapping

Outline

View based mapping

Sampling

Connected Dominating Set

Results

Wrap up

Wrap up

Conclusions

- Sampling in image space is most natural AND gives highest recall
- Given the view based graph, CDS gives the optimal set
- Orthogonal to other approaches (eg. bag of words)
- Makes real time mapping possible

Thanks

Questions....