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1 Introduction

Traditionally, robots are deployed in industrial environments for automatic assembly or

transportation tasks. These environments have well defined structured spatial layouts

and can be augmented with artificial beacons. Spatial knowledge, which the robot might

need, can be given prior to performing its tasks or can be easily derived from the beacons.

In recent years, robots have been deployed in public places and in homes among

people. Examples are robot companions, office delivery robots and the successful au-

tonomous vacuum cleaner (see Figure 1.1). These mobile robots have to operate in hu-

man inhabited environments, of which the structure is unknown prior to deployment.

Current commercial robot products, such as autonomous vacuum cleaners, have a very

limited notion of space, and drive around more or less randomly using simple bumper

sensors. This suffices for cleaning a single room, but for multiple rooms extra equipment

- such as beacons positioned in the door opening - is needed. Moreover, it is impossible

for the robot to prevent getting entangled by power cords lying on the floor or to avoid

bumping into people.

(a) (b) (c)

Figure 1.1: Example applications of vision-based mobile robots: (a) vacuum cleaner, (b)

robot companion and (c) office delivery.

For these new types of applications it is obviously beneficial if the robot has a better

means of sensing its environment. This can be achieved by mounting a camera on the

robot which takes images while driving through the environment. These images can be

used to build and maintain a representation of the spatial layout of the environment which

can help the robot perform its tasks.

In this thesis, we will develop efficient and robust methods that allow a mobile robot

to build and use such a spatial representation of a human inhabited home environment

with camera images.
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1 Introduction

Figure 1.2: Pictorial map of Rome from the Middle Ages.

1.1 Representations of space

The spatial layout of an environment can be represented in different ways. Perhaps the

most intuitive representation is a two dimensional geometric map, in which spatial struc-

tures such as walls and objects are represented by sets of 2D coordinates in a Cartesian

coordinate system (Thrun, 2002). A variant of this geometric map is the 3D map, or 3D

reconstruction (Pollefeys et al., 2008). A popular type of 3D geometric map in the field

of robotics is the landmark-based map, which contains the 3D position of salient points

in the environment. Examples of such salient points are sharp corners of furniture and

bright spots on a wall.

Besides geometric maps, there are other types of representations of the environment

that we will also denote with the term map. Some maps incorporate information describ-

ing how different parts in the environment look. In Figure 1.2, a so-called pictorial map

of Rome is shown as it was seen through medieval eyes. Each small drawing represents

one of the tourist sites. Typical for such a map is that the placement of the drawings in

the map is not that important, as long as the viewer can recognize the sites and see which

sites are close to each other.

Mobile robots equipped with a camera commonly use comparable representations of

the environment (Kröse et al., 2001). A map can be composed of a set of images taken

in the environment combined with a graph representation that links pairs of images. A

link between two images indicates some spatial relationship between the two of them.

Usually, quantitative information on this specific spatial relationship is stored with each

link. In general, we call such a map a view-based map (Mallot and Gillner, 2000; Eustice

et al., 2006). It is quite easy to use such a view-based map for robot localization. While

driving around in the environment, the robot can take an image using its camera and, by

comparing the image with the images in the view-based map, it can deduce where it is in

the map. Besides this straightforward usage of view-based maps, they also scale well to

larger environments (Bailey and Durrant-Whyte, 2006; Cummins and Newman, 2009).
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1.2 View-based maps

(a) Similar semantic place (b) Reachable through motor

commands

(c) Relative pose can be esti-

mated

Figure 1.3: A toy example showing the subtle differences between different types of spa-

tial relationships. The figure shows two rooms seen from above. The four

small eye shaped elements indicate the different poses of the robot from

which images were taken. Lines between the poses indicate that there is a

link between the corresponding images in the view-based map.

1.2 View-based maps

Each link in a view-based map indicates some spatial relationship between two images.

Different definitions for the type of spatial relationship exist in the field of view-based

maps and each results in a different map (see Figure 1.3).

For some maps, a link between two images means that they were taken at the same

semantic place, such as “Kitchen” or “Library”, see Figure 1.3(a). This type of relation

is interesting when doing semantic place recognition used for interacting with humans

accompanying the robot (Topp and Christensen, 2010; Vasudevan and Siegwart, 2008;

Torralba et al., 2003). It is not useful for other robot tasks, such as planning paths through

the environment or goal directed navigation, because it lacks links between images taken

at different semantic places.

For other maps, links indicate that the pose from which an image was taken can be

directly reached from the place where another image was taken by sending some simple

motor commands to the robot (see Figure 1.3(b)). This definition is commonly used in

early literature on topological robot mapping, which combines the captured images with

the low level motor control (Kuipers, 1978). The resulting map thus models a fixed set

of paths through the environment which can be traversed by sending the corresponding

motor commands.

A third type of link definition is based solely on the images themselves (see Fig-

ure 1.3(c)). A link between two images is defined as the ability to estimate the relative

camera pose up to scale given the two images. This pose estimate is then stored with the

link. A relative pose can be estimated from the projection of static structures on the two

images, such as textured walls and objects in the environment. We emphasize that the

scale of the relative camera pose can not be deduced from two camera images, unless we

would make specific assumptions about the environment, such as the average distance to

objects. Nevertheless, in this thesis we will commonly omit writing “up to scale” and

just write “camera pose” or “pose”. A view-based map, based on this link definition, can

be used for different robotic tasks. However, the set of images must be sufficiently dense.

The estimated camera poses can be used for vision-based robot navigation because it al-
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1 Introduction

lows to determine the driving directions to drive over arbitrary paths of linked images.

However, keep in mind that it should be combined with a suitable obstacle avoidance sys-

tem. Moreover, the relative poses can form the basis for a geometric map as follows. As

a first step, they are used to estimate the camera poses in a single Cartesian frame. Then,

structures as seen in the images are reconstructed in this frame by using triangulation.

1.3 View-based map building

For the autonomous vacuum cleaning application we cannot assume that a map, such

as a view-based one, is available when the robot is deployed in its environment. This

is true for a lot of the robot applications that appeared in recent years. Thus, the robot

has to build such a map itself from images it took while exploring its environment. This

important robotic task is known as mapping. The core of building a view-based map is to

compare pairs of images. If an image pair is spatially related according to the used link

definition, a link is added to the map.

For most applications, the robot needs to use its map while it is exploring the environ-

ment. For example, it might need to ask questions to a human guide to resolve certain

ambiguities during the mapping process. To achieve this, the robot has to incrementally

build a map by adding newly taken images to it and add links from each new image to

other images in the map. Of course, the number of possible links that should be added

increases with the number of images in the map. The challenge is to develop a view-

based mapping method that is efficient enough to be run in “real time” yet robust enough

to cope with the difficult circumstances of dynamic home environments.

The mapping problem is commonly approached by incrementally building a landmark-

based geometric map. This geometric map makes it possible to predict where landmarks

will be projected on newly taken images. These predictions can then be used to im-

prove the efficiency, as well as the robustness of the mapping process. The approach of

incrementally building a geometric map is known as SLAM, which stands for Simulta-

neous Localization And Mapping. Research in SLAM has focussed on efficiently and

consistently integrating landmark observations and estimated relative camera poses, and

has resulted in various well founded methods (Bailey and Durrant-Whyte, 2006). These

have been successfully applied to build 3D landmark-based geometric maps of small

scale office environments (Davison et al., 2007) and outdoor environments (Clemente

et al., 2007). So why are we interested in view-based representations?

The landmark-based SLAM approach tries to build a representation of the environment

that is independent of the actual images in which the landmarks were observed. Of course

there is a dependency between landmarks observed in the same image. SLAM methods

try to take this into account by modeling these dependencies. Unfortunately, such a

model is not perfect and some dependency between the landmarks is lost. This is the

case, for example, in environments with relatively big changes in lighting conditions as

they typically affect the complete image.

View-based methods avoid this problem by explicitly maintaining a set of features,

such as observed landmarks, separately for each image. The map can be used for easy,

view-based, localization and visual navigation. It can also be used to build a geometric

representation and can therefore be seen as a lazy approach, in which a relatively high

12
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amount of sensor information is retained.

The question we address in this thesis is how to deal with the effort of comparing new

images with the map, since the view-based map cannot benefit from the predictions of

landmark observations.

1.4 Objective of this thesis

In this thesis we focus on view-based mapping methods for real home environments.

The aim is to develop a practical mapping method that is both robust in these challenging

environments and efficient enough to be applied in real time. We focus especially on

developing a robust and efficient image similarity measure, which is based on the ability

to estimate the relative pose given two images. For unrestricted robot motion, one can

take advantage of the well-studied methods originating from computer vision, see for

example Hartley and Zisserman (2003). We will try to improve on these methods by

making extensive use of the fact that the mobile robot drives over an approximately

planar surface and the camera is mounted rigidly onto the robot. We have formulated

two research questions:

• How can the planar motion assumption be used to estimate the relative pose given

two images taken in a home environment?

• Can we thus obtain more accurate and efficient results than existing unrestricted

pose estimation techniques?

In order to determine whether a link should be added to the view-based map, we have

to assess the quality of the estimate. We will propose a new quality measure that is

founded on probability theory. In particular, we will try to determine a probability dis-

tribution over all possible relative poses, given the two images, and use that to measure

the uncertainty of the pose estimate. This uncertainty could directly be used to aid 3D

reconstruction applications. We try to answer the following questions:

• How can the uncertainty of the estimated relative pose be measured?

• Does this uncertainty measure provide an efficient and robust image similarity

measure for the view-based mapping application?

Both the pose estimation and the uncertainty estimation methods will be designed

such that they need only little computation time and outperform existing methods on

efficiency as well as accuracy. However, when adding images to a large view-based map,

determining the similarity with all images is impractical. Instead of trying to make the

similarity measure even more efficient and risking loss of accuracy, we compare each

new image to only a subset of images. This subset of images should of course give a

good representation of the complete set of images in the map. Relevant questions are:

• How can we limit the number of image comparisons necessary for view-based

mapping?

• What effect does comparing with only a subset of images have on the resulting

map?

13
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Answering these questions allows us to build efficient and robust algorithms that can

be implemented on robotic systems performing applications in real time. In this thesis,

we will not focus on the robotic systems themselves. Nevertheless, in Appendix B we

describe - as a proof of concept - a robot that uses some of the proposed methods for path

planning and navigation among humans. In Appendix C, we show a similar robot system

which maps a home environment in real time while resolving ambiguities by interacting

with a human guide.

1.5 Thesis overview

Chapter 2: View-based mapping, an overview

In the field of robotics there has been, and still is, a lot of interest in view-based

mapping. Here, we give a more elaborate description of the problem of building a

view-based map and relate it explicitly to the problem of comparing images. An

overview is given of the different approaches to compare images and how they are

used in view-based mapping methods. In addition, we show how topological and

possibly geometric information is used to improve the robustness and efficiency of

map building.

Chapter 3: Two-view pose estimation assuming planar camera motion

In this chapter, we focus on comparing two images from the same scene and es-

timating the relative camera poses up to scale. We thoroughly investigate how

the assumption, that the robot moves over an approximately planar surface, can

be used to estimate the relative camera pose from a set of automatically extracted

point correspondences. A new method is developed that estimates the full likeli-

hood of all possible poses. The resulting maximum likelihood solutions are shown

to be more accurate than state of the art methods.

Chapter 4: Image similarity for view-based mapping

Based on the developed pose estimation method, we propose a new image simi-

larity measure for finding links for a view-based map. The method uses the full

likelihood to directly approximate the probability that the estimated pose is the

correct one. This approximation is evaluated using ground truth pose information.

On top of this, we compare the resulting image similarity measure in a semantic

place recognition task.

Chapter 5: Data association using connected dominating sets

Practical view-based mapping methods should be able to deal with large maps

consisting of more than a thousand images. In this chapter we use a graph theoretic

method called the Connected Dominating Set to obtain a minimal set of images that

still adequately represents the complete map. It is compared with other frequently

used methods such as subsampling over time or over the distance traveled.

Chapter 6: Conclusions

14



1.5 Thesis overview

In this final chapter we summarize our main contributions and experimental re-

sults. In addition, we give directions for future work, focussing on promising

applications.

Appendix A: Real home datasets

Throughout this thesis, we use the same datasets to evaluate each of the developed

methods. These datasets were taken by two mobile robots in three real home envi-

ronments with people walking near the robot and typical bad lighting conditions,

resulting in challenging images.

Appendix B: Navigation using an appearance-based topological map

To show the usability of a view-based map, we describe a system that performs

basic path planning and goal directed navigation using a map that was built with

methods described in this thesis.

Appendix C:

In some applications, it is essential that a robot can map a new environment in real

time. A good example is guided mapping, in which the robot needs to interact with

a human guide to obtain semantical information and to resolve ambiguities while

mapping. In this appendix, such a system is described.
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2 Mapping based on images: an

overview

This chapter gives an overview of the field of view-based mapping and describes a gen-

eral framework for a view-based mapping system used in the rest of this thesis. As we

will see, most view-based mapping systems directly or indirectly base the existence of

a link between two images on some form of relative pose estimation. In addition, most

mapping systems use topological and robot pose information while mapping.

2.1 Introduction

The problem of view-based incremental mapping, or simply mapping, can broadly be

defined as trying to build and maintain a spatial representation, or map, of the envi-

ronment while gathering sensor input including new images (Thrun, 2002; Bailey and

Durrant-Whyte, 2006; Newman and Ho, 2005). The quality of such a view-based map

is partly defined by its intended use. This could be goal-directed navigation, measuring

distances, human robot interaction or - as often is the case - a combination of the three.

Nevertheless, we can specify two requirements that are universal.

In the first place, the computational cost should be such that the procedure can run

in real time on the robot while it is driving through the environment. Because modern

robots and computers have a lot of memory and storage space, the main bottleneck is

usually the required computation time.

In the second place, mapping methods should build consistent maps. It is difficult to

properly define this second requirement. The idea is that images taken at very different

places in the environment should not be close together, or linked, in the map. Vice versa,

images shot from more or less the same position viewing more or less the same structures

of the environment should be linked or placed close to each other. Anati and Daniilidis

(2009) denoted these two concepts “spatial distinctiveness” and “compactness”.

During the mapping process, the robot sequentially collects images. Each time the

robot takes a new image, it should try to improve the map. The task of determining to

which parts of the map a new image belongs, is known as data association (Bailey and

Durrant-Whyte, 2006). For view-based mapping approaches, data association involves

comparing the new image with previously acquired images that are already in the map. In

Section 2.2, we give an overview of the different methods commonly used for comparing

pairs of images.

What makes the mapping application interesting is the fact that a previously visited

part of the environment can be revisited. If this is detected by the mapping algorithm,

then it is called a loop closure. These detections are essential for a useful map, because

they allow to plan new routes through the environment, which are distinct from the route
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already traversed by the robot.

It could also be that two different, spatially distinct, parts of the environment look

alike, possibly resulting in a false loop closure. In view-based mapping, such phenomena

are known as visual aliasing or image aliasing. Visual aliasing is usually catastrophic for

the map, because it creates false links in the map. These links are sometimes called

“worm holes” (Olson, 2008) and seem very useful for traveling directly from one end of

the environment to the other. There is clearly a trade off between finding all loop closures

and avoiding visual aliasing.

To limit the computational resources and avoid visual aliasing, mapping systems can

take advantage of the sequential characteristic of the incoming sensor data and the infor-

mation contained in the growing map . This can, for example, be achieved by only com-

paring to a subset of the images, called key images. There are methods that do this, using

only topological information of the map built so far. This is described in Section 2.3.

Mapping methods that also estimate and maintain the geometric robot trajectory in the

map, have the ability to use relative pose information to help solve the data association

problem. This is described in Section 2.4.

2.2 Methods for comparing images

Data association is a fundamental task in view-based mapping and in its core is usually

an image similarity function that compares images. Given two images Ii and Ij , its

aim is to determine how similar they are. This is expressed by some similarity value

Sij = S(Ii, Ij). Commonly, this similarity value is derived from a dissimilarity value

Dij . In this chapter, we sometimes assume that this dissimilarity value is also available.

The common assumption is that if two images look similar, then there is a high chance

that they partly depict the same structures of the environment. Thus, they should be

linked in the map. The question is how to define similarity in images and how to measure

it. Various answers are found in the field of computer vision or, more specifically, in the

field of content-based image retrieval (Datta et al., 2008; Smeulders et al., 2000). In

content-based image retrieval, the problem of finding images that depict the same part of

the environment is called place recognition (Torralba et al., 2003; Konolige and Bowman,

2009). As we have mentioned in Chapter 1, the aim of place recognition is to find images

that have the same semantic label. Take, for instance “Kitchen”.

For maps aimed at goal-directed navigation or 3D reconstruction, we want a more

specific requirement for the image similarity measure. Namely, two images are similar

if we can determine some local geometrical information relating them. In the following

part, we describe the problems faced when defining an image similarity measure and we

give an overview of the different (dis)similarity measures used in existing view-based

localization and view-based mapping methods.

2.2.1 Invariance vs specificity

Images can contain a lot of information about the environment. However, the raw pixel

values of two images depicting the same structures of the environment are usually very

different. On the one hand, this difference is caused by changing conditions of the envi-
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ronment, such as a changing illumination, displaced furniture and dynamic objects and

people. On the other hand, images are influenced by changes of the measurement system

itself, such as noise of the image sensor, a changing auto gain and different camera pose.

A similarity measure should be invariant or mostly invariant to these changing condi-

tions, while being specific for the structures of the environment that are depicted in the

images. Methods to reach such invariance can be roughly divided into two approaches.

A straightforward approach is to determine from each image a set of image features

which are invariant to each condition. For example, to reach invariance for the changing

color of the light source one can use only the light intensity of each pixel and discard the

chrominance by converting color images to gray scale (Lowe, 1999).

A more involved approach to reach invariance to a certain condition is to explicitly

measure its value from each image and take it into account when comparing images. An

example is described in Pollefeys et al. (2008), where the gain factor of the camera is es-

timated for each of the images. When comparing two images, the features are normalized

using the specific estimated gain factors.

As we shall see in the next sections, most image comparison methods used in existing

view-based mapping systems use the straightforward approach for most changing condi-

tions. They determine a set of invariant image features for each image. However, this is

not the case for the changing camera pose. The relative camera pose between two images

is usually explicitly estimated, based on the extracted image features. When determining

the image similarity, this estimated pose is used to compensate for the variation in the

feature sets that resulted from the change in camera pose. This special treatment of the

camera pose, reveals the implicit assumption that for view-based mapping most of the

variation in the images can be explained by the difference in camera pose.

2.2.2 Image features

Most, if not all, image comparison methods first try to determine some quantitative fea-

tures that are specific for the structures - such as textured walls and objects - as depicted

in the images and invariant or mostly invariant to other influences. The set of feature

values extracted from an image is known as the feature vector or descriptor. Image

comparison methods can be roughly divided into two groups, depending on the type of

features they use (Murphy et al., 2006). The first approach describes the each image as a

whole, using a fixed length descriptor which is called a global feature. The global feature

is usually constructed such that the Euclidean distance between the descriptors di and dj

of two images i and j defines the image dissimilarity measure:

Dij = ‖di − dj‖ , (2.1)

The second approach first searches for salient regions in the image and describes each

region with a separate descriptor (Harris and Stephens, 1988). A complete image is then

composed of a set of local feature descriptors. The size of this set can be different for

each image. Determining the similarity is then based on finding feature matches, which

can be accomplished in various ways. In the following sections we give examples of

commonly used global and local features.
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Global image features

Describing images with global image features and matching pairs of global descriptors

are usually relatively simple procedures compared to using a local features approach.

For example, an image can be described by its average pixel intensity or higher order

moments and Eq.(2.1) can be used to compare these values. Although such a method is

very crude, it costs very little computation time. In Gross and Koenig (2004) and Murillo

et al. (2007) it is used in relatively large view-based mapping applications as a first check

to decide on which image one should apply more sophisticated time consuming methods.

Another simple and efficient method is using color histograms. A well-known study

described in Ulrich and Nourbakhsh (2000) applies them for both indoor and outdoor

view-based localization.

A somewhat more involving approach, is the use of dimension reduction techniques

like Principal Component Analysis (PCA). This is popular for panoramic images. By

treating the raw pixel values of a set of training images as vectors, one can apply PCA to

obtain a number of eigenvectors corresponding to high eigenvalues. These eigenvectors

are known as eigenimages and describe the main variance in the image set. Each newly

acquired image is then projected onto these eigenimages, resulting in a concise descriptor

vector. Examples of robot localization methods using such a dimension reduction scheme

are described in Nayar et al. (1995); Kröse et al. (2001); Jogan and Leonardis (2003).

They are usually combined with methods that estimate the relative rotation of the camera,

as explained in Section 2.2.3. An important characteristic of this approach is that a

training set of images is used to determine the eigenimages. This is problematic when

mapping an unknown environment, but could also be an advantage if a representative set

of images is available. A related approach uses the magnitude coefficients of the Fourier

transform as the global feature descriptor instead of the eigenvalues (Ishiguro and Tsuji,

1996; Menegatti et al., 2004). The advantage of this approach is that, if the robot drove

over a planar surface and took omnidirectional images using a fisheye lens or a convex

mirror, then the descriptor is invariant to the robot rotation.

The main drawback of global features is that they lack invariance against viewpoint

changes. Indeed, most of the methods cited above are applied in relatively simple indoor

office environments. Because mapping methods are nowadays applied in more taxing

environments and more computational power is available, one might think that they are

outdated. However, when they are combined with other sophisticated mapping tech-

niques, they are still very usable. Milford and Wyeth (2008) describe a localization and

mapping system, which is able to build a large outdoor map while using a simple global

feature method to compare images. In this case, the images were described by the sum

of pixel intensities of each image row.

Local image features

Usually, some regions of an image have more visual texture than others. One can take ad-

vantage of this by finding highly textured regions and describing them separately. Each

of these regions is characterized by a certain image point and described using the sur-

rounding pixels. Together these are called a local feature or simply feature. Comparing

two images then entails finding similar local features between the images. This type of

image comparison is popular, because it is more robust against occlusions and changes
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in lighting than methods based on global features. Building an image descriptor involves

two tasks. First, salient features are detected. Second, feature descriptors have to be built.

There are various point image feature detectors to extract a set of salient features from

images, of which we name the most popular in the field of view-based mapping. A

computationally cheap method is to extract Harris corners (Harris and Stephens, 1988).

These are, however, not invariant for illumination changes and are mainly used in small

scale landmark-based SLAM approaches (Davison et al., 2007) relying highly on the es-

timated landmark positions in the map, or in combination with other more robust features

(Eustice, 2005). Popular robust features are blob-like points such as used in SIFT (Scale

Invariant Feature Transform) (Lowe, 1999) and SURF (Speeded Up Robust Features)

(Bay et al., 2006), which were originally meant for object recognition tasks and are rel-

atively time consuming. At the time of this writing the majority of view-based mapping

methods uses one of these two features. Nevertheless, a more appealing approach to

finding viewpoint invariant features is through tracking local features over a sequence of

images. Points that can be tracked for a certain number of images are bound to be good

for comparing images. There is a lot of literature on tracking simple features such as

the famous KLT tracker (Shi and Tomasi, 1994). However, more sophisticated feature

trackers, such as SURF trackers are, still under development (He et al., 2009).

In order to build descriptors for the extracted feature points, various methods exist. A

simplistic approach is to use the pixel intensities surrounding the salient feature. These

can be compared using the Euclidean distance, known in this context as SSD (Sum of

Squared Differences) or the L1-norm, known as SAD (Sum of Absolute Differences).

Such simple methods are sometimes used in Computer Vision applications (Hartley and

Zisserman, 2003). However, they are not popular in the field of robotics because they

lack robustness against illumination changes. More involved descriptors are based on

particular feature types and even share some of the needed processing steps with the

detectors. This is the case for SIFT and SURF features. When a study claims to use SIFT

features, then both the SIFT detector and the SIFT descriptor is used, unless otherwise

stated. The same holds for SURF features.

The local feature descriptors of different images are compared to find matching fea-

tures. Like global feature descriptors, local feature descriptors are usually designed to

be compared using the Euclidean norm. To find corresponding features between two im-

ages, the distances between all features from one image to the features in the other image

should be found. Two features can then match, if the distance between their descriptor is

smaller than a certain threshold. However, it is more common to correspond each feature

in one image to the nearest neighboring feature in the other image, if the ratio between

the distance of this nearest neighbor and the distance to its second nearest neighbor is

above some threshold, typically set to .8 (Lowe, 1999). In this way, one ensures that the

correspondence is more or less unique.

The image similarity measure is usually based on the percentage of image features that

were matched, as for example set out in Andreasson et al. (2008):

Sij =
Mij

1
2 (Fi + Fj)

, (2.2)

where Mij denotes the number of matches and Fi the number of features found in image

Ii. However, other schemes exist ranging from very simple functions such as Sij = Mij
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in Valgren and Lilienthal (2007) to complicated functions such as in A. C. Murillo and

Sagues (2008):

Sij = e
−

1−sij
σS with sij =

1

Mijde + zF + 1
, (2.3)

where de denotes the average Euclidean distance of the feature matches, F the number

of unmatched features, z a constant penalty term and σS the variation of sij for different

images Ij .

An important drawback of comparing local image features is the computation time

used. Typically, one image results in about 103 local features each with a descriptor of

typically 128 byte values. Comparing two images thus results in the order of 108 oper-

ations. A possible solution is to use Approximate Nearest Neighbor algorithms (Arya

et al., 1998) as done by Sim et al. (2005) for landmark-based SLAM and A. C. Murillo

and Sagues (2008) for view-based mapping.

Recently, it has become popular to perform dimension reduction on the descriptors by

quantifying them using a so-called code book. The code book contains a mapping from

descriptor space to a limited number of discrete values called words. Such an approach

is known as the Bag of Words (BoW) approach and originated from the field of natural

language processing (NLP). A set of representative training data is used to construct the

code book. Image comparison is then performed by comparing the specific word counts

of each image. With this efficient comparison technique, maps can be constructed in the

order of 103 images. This is done by Fraundorfer et al. (2007); Konolige and Bowman

(2009); Callmer et al. (2008); Schindler et al. (2007). When using a BoW approach, one

can benefit from the availability of various techniques studied in NLP. An example is

dealing with the interdependencies between different words, used in the popular view-

based mapping framework “FABMAP” (Cummins and Newman, 2008, 2009). FABMAP

can build maps of 105 images.

In addition, there are localization and mapping systems that use line features from

images. This mostly concerns vertical lines, which project to vertical lines in the image

if the robot drives over a planar surface. They are, for example, used in the Fingerprint

method (Lamon et al., 2001) in combination with color information and in Scaramuzza

et al. (2009), where a line descriptor is developed that is similar to the SIFT-descriptor

for point features.

2.2.3 Using local geometric information

As we have mentioned in Section 2.2.1, most view-based mapping systems estimate

the relative camera pose from the images in order to determine the image similarity.

In this section we give an overview of the specific methods used in existing mapping

systems. The general approach can be described as follows. First an image similarity

measure is defined on the basis of the existing feature matches as found using one of the

discussed feature extraction methods. The resulting similarity usually depends greatly

on the particular poses of the camera. The image or the extracted features can be shifted

or changed to compensate for different relative camera poses. This is performed for a

subset of possible poses and the image similarity value is determined. The highest value

is then taken as the final image similarity:
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Figure 2.1: Abstract graph clarifying the relation between the estimated relative cam-

era pose and the determined image similarity. The horizontal axis represent

all possible relative poses and the vertical axis the image similarity measure

S (Ii, T r(Ij)) (see Eq. 2.4). The maximum of the function indicates both the

best fit relative pose and a measure of the image similarity.

Sij = max
Tr

S (Ii, T r(Ij)) , (2.4)

where Tr(Ij) denotes the changed image Ij given the pose Tr. The idea is that the

pose Tr that maximizes the function corresponds to the actual relative camera pose, thus

removing all the variance in the images that was due to the different camera pose:

T̂ rij = arg max
Tr

S (Ii, T r(Ij)) . (2.5)

See Figure 2.1 for a graphical representation of the relation between the image similarity

measure and the relative pose.

An important consequence is that the resulting image similarity measure reflects how

well local geometrical information can be extracted from the images. This is useful for

goal-directed navigation or global geometric map building, as introduced in Chapter 1.

In the following part, we discuss the specific techniques that are used for both global and

local image features.

Geometric information for global image features

Global feature comparison techniques are mainly used for robots that move over a planar

surface, which makes it easier to estimate the relative pose. In addition, most methods

make the implicit assumption that the shift in appearance can be mostly explained by

a camera rotation around the vertical axis. Estimating this rotation requires finding the

horizontal shift of the images that maximizes the similarity between them.

For PCA-based image comparison, this can be readily performed by shifting the eigen-

images horizontally, for example done by Jogan and Leonardis (2003). For rotation in-

variant features, such as color moments, the image can be horizontally segmented into
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Figure 2.2: Top view of three numbered objects that are projected on the image planes

of two cameras. (a) As can be seen for different camera positions the relative

position of the projected objects is not preserved, that is: the left camera sees

object 2 and 3 relatively close to each other, but the right camera sees 1 and 2

closer. For this object configuration, however, the order is the same for both

viewpoints. (b) For general object configurations neither the relative position

nor the order is preserved: the left camera sees 1-2-3, while the right camera

sees 2-1-3.

vertical rows, which are described separately. Rotation estimation is performed by shift-

ing these rows. Examples of robot localization methods that use such an approach are

described in Gross and Koenig (2004); Sturm and Visser (2009). The RatSLAM system

(Milford and Wyeth, 2008) uses a similar approach in combination with image intensity

information per pixel row and shifting these pixel rows to get the highest similarity.

Geometric information for local image features

Some local feature methods use the same assumption for the relative pose as used by the

global feature methods, in which a 2D rotation is estimated by determining the horizon-

tal shift of local feature correspondences. This is for example used in the view-based

mapping systems FABMAP 2.0 (Cummins and Newman, 2009) and MiniSLAM (An-

dreasson et al., 2008). This assumption does not hold if the camera also translated, as

shown in Figure 2.2(a).

In Lamon et al. (2001) a different type of feature consistency is used. Instead of

assuming only 2D rotation, it is assumed that the robot is moving in a convex space,

e.g. an empty room. Such an assumption does not preserve the relative angles between

observed features, but does preserve their order, as can be seen in Figure 2.2(a). This

approach is commonly used in combination with vertical line features such as described

in Murillo et al. (2007). It is also common in robot homing applications that try to

perform goal-directed navigation given an image taken at the goal position (Franz et al.,

1998; Argyros et al., 2005). In general, for non convex spaces, this assumption does not

hold. This is shown in Figure 2.2(b).

Only a few methods were proposed that do take both rotation and translation into

account, while still enforcing motion over a planar surface (Ortı́n and Montiel, 2001;

Goedemé et al., 2005a). In Scaramuzza et al. (2010) a method is presented that, in

addition to the planar motion constraint, uses automobile vehicle constraints to improve

24



2.3 Exploiting topological information

motion estimation.

Most localization and mapping systems do not make assumptions about the structure

of the environment or particular constraints of the robot motion. Both 3D rotation and

3D translation up to scale are estimated from the feature correspondences. This estima-

tion can be performed using various methods developed in the field of Computer Vision

(Kanatani, 1996; Torr and Murray, 1997; Hartley and Zisserman, 2003; Schaffalitzky and

Zisserman, 2002).

The most popular estimation method at the time of this writing combines standard least

squares schemes with the robust RANSAC algorithm (RANdom SAmple Consensus)

(Fischler and Bolles, 1981). This method directly estimates both the relative pose and

the number of correspondences that fit the relative pose. It is used in various recently

proposed mapping systems (Eustice, 2005; Newman et al., 2006; Fraundorfer et al., 2007;

Konolige et al., 2009; Segvic et al., 2009). The same scheme is also popular in the

image retrieval community for the application of place recognition under the term “spatial

verification” (Chum and Matas, 2010; Li et al., 2008; Philbin et al., 2007).

2.2.4 Discussion

We described relevant image comparison methods used in view-based mapping. Al-

though this overview is far from exhaustive, it is clear that there are a lot of different

choices. Unfortunately none of the these can be regarded as the “golden standard”.

The most popular approach is to use SIFT and SURF features in combination with

the Bag of Words approach and a local geometric consistency check. This consistency

check is actually not integrated in the BoW approach, but used more as an ad hoc rule

to find image pairs that wrongly got a high image similarity value. A better integra-

tion of the geometric consistency and appearance similarity would seem to be a logical

improvement.

The geometric consistency check involves estimating the relative camera pose from a

set of feature matches. If this estimation fails, this will result in a low image similarity

value. Thus, most of the used image similarity measures actually try to measure how well

a relative pose can be estimated from two images. This is exactly the definition of a link

between two nodes in a view-based map, as proposed in Chapter 1 and used throughout

this thesis.

2.3 Exploiting topological information

As introduced in Chapter 1, a view-based map can be seen as a graph G = (V,E)
in which a node v ∈ V represents an image and a link (u, v) ∈ E denotes that the

two images corresponding to nodes u and v partly depict the same structures of the

environment. It is straightforward to build such a map, using one of the discussed image

similarity measures. For each new image the robot takes, the similarity is determined

with every image in the map. If this similarity is above a certain preset threshold, then

a link is added to the map. Commonly, the similarity value Sij and possibly some local

geometric information is then stored for each link.
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Numerous view-based mapping methods use this straightforward approach (Newman

and Ho, 2005; Ulrich and Nourbakhsh, 2000; Fraundorfer et al., 2007; Konolige and

Bowman, 2009; Callmer et al., 2008; Schindler et al., 2007). However, this approach

leans heavily on the assumption that if two images look similar, then there is a high

chance that they partly depict the same structures. Robustness against visual aliasing

is completely ruled by the robustness of the similarity measure. On top of this, it is

computationally costly because each new image has to be compared with all images in

the map.

The robustness and efficiency can be improved by taking specific properties of the

mapping problem into account. In the following sections, we discuss the two main prop-

erties and how they can be used to improve data association. Images are acquired se-

quentially and previously visited parts of the environment can be revisited.

2.3.1 Image sequences

Images are acquired sequentially while the robot is driving around. This sequential prop-

erty is sometimes directly used to improve mapping by always adding links between

consecutive nodes (Valgren et al., 2007; Konolige and Bowman, 2009). These links are

sometimes called “weak links”, as opposed to the links that are found by comparing im-

ages which are called “strong links” (Lu and Milios, 1997). The sequential property also

results in a dependency of the features extracted from images taken close to each other

in time. If one uses a tracker to identify salient image points, such as the KLT tracker,

this dependency information is used on the image descriptor level. This is, for example,

the case in Eustice (2005). More interesting is to use it on the data association level and

improve both its robustness and speed.

Most large scale mapping methods do this by implicitly reducing the number of images

in the map. This is done by processing only a limited number of images per time step,

like in Ulrich and Nourbakhsh (2000), which uses only one image per second. One could

see this as sampling the images uniformly over time. A similar approach is to process

only a limited number of images per traversed distance, which requires a method for

estimating the displacement. In Sim and Dudek (1999); Jogan and Leonardis (2003) this

is done on the basis of odometry measurements and in Cummins and Newman (2008)

on the basis of GPS readings. Both these approaches have their drawbacks, which are

partly due to the dependency of the consecutive images on the speed of the robot. When

the robot is standing still, captured images usually look similar. A time sampling-based

method puts these almost identical images in the map, which could make data association

unnecessarily slow. A displacement-based method would put only one of these in the

map, not capturing possible dynamic changes in the environment such as illumination

changes.

A better approach is to use the image similarity measure to define when a new image

should be added to the map. For example, by only adding an image if the similarity

with the previously added image drops below some threshold as is done in Konolige and

Bowman (2009). In Kosecká et al. (2005) a more sophisticated approach is set out, in

which a clustering algorithm is used to find groups of consecutive images that look alike,

based on image similarity, and sample one image per cluster for data association.

Another straightforward method to use the sequential property, is to only define a link
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between two nodes if not only their images are similar, but also the images taken right

before and after have a high similarity value. This is known as smoothing the map and is

commonly used, for example as in Cummins and Newman (2008).

All these methods are relatively easy to implement and at the same time improve data

association considerably. Most of them can also be used in other applications where

images are shot in a sequence, for example when tracking moving objects in video. Other

characteristics, more specific for the localization and mapping application, can also be

used. This will be discussed in the following section.

2.3.2 Loop closing

While a robot is mapping, it usually observes at least some parts of the environment

multiple times. This does not only occur during a loop closing event, but for example also

when the robot is driving back and forth through a corridor. There will be a dependency

between the features extracted from images observing the same part of the environment,

although taken at different visits. Like for the sequentially shot images, this can be used

to make data association faster and more robust.

A commonly used approach groups the set of images of the view-based map into clus-

ters of similar looking images. From each cluster a single key image is then chosen

which is used for data association. This is similar to the method in Kosecká et al. (2005)

discussed earlier, but is not restricted to clusters of sequentially taken images. A question

is how to efficiently solve such a complex clustering problem. A common solution is to

use the normalized graph cut algorithm (J.Shi and J.Malik, 2000) as applied in view-

based mapping (Zivkovic et al., 2005) and in a view-based SLAM method (Rogers and

Christensen, 2009). In Valgren et al. (2007) an incremental clustering algorithm is pro-

posed that clusters the graph while it is growing and uses it for view-based mapping. In

addition, the mapping systems FABMAP and RatSLAM groups images. In FABMAP

(Cummins and Newman, 2008) these groups are called “locations”, which consist of im-

ages that observe the same objects. In RatSLAM (Milford and Wyeth, 2008) these groups

are represented by pose cells, which are inspired on the brain cells a rat uses for mapping

and trained using an associative learning scheme.

In Konolige and Bowman (2009) the problem of revisiting the same places is studied

more thoroughly in the context of lifelong mapping, in which a robot keeps on updating

its map over a long period of time. Images are grouped using a graph clustering method.

In addition, it uses geometrical information removing images that were taken in a vicinity

of 50 centimeters of another image.

In Zhou et al. (2008) a method was proposed that only adds those images to the map

that reduce the amount of uncertainty of the map. In this case, the uncertainty was defined

in a geometrical mapping context, but this could also be generalized for non-geometric

view-based mapping. A drawback of such a method is that once an image is added to the

map, it cannot be replaced by an even more informative image. Vice versa, images that

are not added, could potentially prove to be informative on the basis of future images.
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2.3.3 Discussion

View-based mapping systems can simply be based on one of the many image similarity

measures defined in Section 2.2. However, to improve robustness and efficiency, view-

based mapping systems often use the dependency between sequentially shot images and

images observing the same part of the environment. These types of improvement can

directly use the topological information available in the view-based map.

The most popular method is to first cluster the images in groups based on a graph clus-

tering algorithm, and then pick a single image per cluster for data association. However,

graph clustering is not trivial. It would be worthwhile to investigate if this problem could

also be solved in one step, directly determining a set of key images. This would avoid

solving the, perhaps more difficult, clustering problem.

2.4 Exploiting robot pose information

In addition to topological information, various view-based mapping methods make use of

robot pose estimates when performing data association. It is evident that the probability

that two images depict the same structures of the environment is very dependent on the

relative pose between the two camera poses from which the images were taken. If the

view-based map contains the camera pose for each image in a single coordinate frame

in addition to an estimate of the camera pose of a new image, then these relative poses

can be estimated directly and used to decide which image pairs are more likely to depict

the same structures. The problem is how to obtain these camera poses from the unknown

environment.

A solution is to estimate these poses from the view-based map itself, possibly using

the local geometric information found during image comparison. Each new link between

two nodes in the topological map poses a non-linear geometric constraint for the set of

robot poses. The complete set of links of a view-based map in this context is sometimes

called a constraint map (Konolige, 2005). The problem is to find all the camera poses

that best fit these constraints.

This “geometric” mapping problem has attracted a lot of attention from the robotics

community in the last twenty years, which resulted in an immense amount of literature.

In this section, we give an overview of this field. First, we briefly describe some methods

that base a geometric map solely on the similarity between pairs of images, which is

a type of embedding. Then, we move to the more common method that fuses local

geometric information extracted from the image pairs into a global map, which is the

approach known as view-based SLAM or trajectory SLAM. Finally we explain how the

estimated robot poses are used to improve data association.

2.4.1 Embedding

If images are compared using a global feature approach as described in Section 2.2.2,

then commonly no explicit geometric information is available or, as explained in Sec-

tion 2.2.3, only rotation information is known. However, there is no translation informa-

tion. Thus, it is not that common to estimate camera poses based on an image comparison
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function that uses only global features. Nevertheless, a dissimilarity function does pro-

vide a measure of distance that can be interpreted geometrically. It has been shown in

Verbeek (2004) that by simply applying dimension reduction on a set of images pic-

turing a rotating head one can find a 2 dimensional ordering of the amount of rotation.

Each image was thus embedded in a low dimensional manifold. In a similar fashion, one

can find an ordering of the amount of translation from images taken by a driving robot.

Effectively one is embedding the images in a low dimensional coordinate system.

For example, in Ham et al. (2005); Yairi (2007) PCA-like methods are used to project

the images on a 2D or 3D manifold which gives an indication of the 2D or 3D position of

the robot pose. For small scale environments this is shown to improve position estimates

obtained through odometry. In Menegatti et al. (2004) a spring model was used to find

robot poses that best fit the image dissimilarities which were computed using the distance

between the magnitude components of their Fourier transform.

The method used in the RatSLAM system (Milford and Wyeth, 2008) is also a type of

embedding. Here a non-linear mapping between images and poses is learned using a type

of recurrent neural network model given an image dissimilarity measure based on pixel

intensities. It is shown that with such an approach it is possible to robustly approximate

a very large 2D robot trajectory from images only and use it to improve data association

while mapping.

2.4.2 SLAM

Another, much more popular approach to estimate camera poses is to use the relative

poses as estimated up to scale when comparing image pairs using local features (see Sec-

tion 2.2.3). While the map is growing, new links provide new relative poses which can be

used to re-estimate all robot poses. The estimation problem can, however, not be solved

in closed form because of the non-linearity of the relative pose constraints. This prob-

lem is known as view-based SLAM (Simultaneous Localization And Mapping) (Bailey

and Durrant-Whyte, 2006; Eustice et al., 2006) It is closely related to the well-known

landmark-based SLAM problem (Newman, 1999; Smith et al., 1990), where the position

of landmarks needs to be determined given their projection on the images. Because of

the popularity of the term SLAM, it has also been associated with purely topological

view-based mapping (Milford and Wyeth, 2008; Newman and Ho, 2005; Cummins and

Newman, 2008). In this section, however, SLAM is reserved for the problem of finding

the geometric robot poses or landmark positions from local geometric constraints.

View-based SLAM and landmark-based SLAM can be solved using the same type

of approaches. The traditional approach is based on an Extended Kalman Filter, which

linearizes each new constraint using the latest map estimate and uses that to maintain a

full covariance over all robot poses (Smith et al., 1990). The disadvantage of this method

is the large computational load and memory usage which both grow quadratically with

the number of poses. Eustice et al. (2006) has shown that by maintaining the inverse of

the covariance matrix, called the information matrix, these can be reduced considerably.

The disadvantage is that the uncertainty of the pose estimate is not available, which has

a negative effect on data association as we shall see later (Frese, 2006a).

In recent years, there has been a shift towards non-linear algorithms which are not

based on the Kalman Filter. This is partly driven by advances in the very much related
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Structure from Motion (SfM) problem studied in Computer Vision (Triggs et al., 2000;

Ni et al., 2007). The main difference with SLAM is that SfM is defined as a non-iterative

problem. This resulted in non-iterative methods such as Smoothing And Mapping (Del-

laert and Kaess, 2006) and Multi-level relaxation (Frese et al., 2005), that for each new

image estimates all poses using all local geometric constraints. Later iterative variants of

these algorithms have been proposed, such as in Kaess et al. (2008).

A second source of non-linear SLAM approaches originated from advances in the

study of Graphical Models (Bishop, 2006). Viewing the constraint map as a Bayesian

network model and approximating it using tree like structures, allowed for new iterative

non-linear SLAM methods. Examples are the sophisticated TreeMap algorithm (Frese,

2006b) and the TORO system (Grisetti et al., 2009).

These modern approaches to solving SLAM have been applied in relatively large areas.

However, they depend heavily on successful data association of the previously taken im-

ages. If some visual aliasing is present, the estimation process will often fail catastroph-

ically (Bailey and Durrant-Whyte, 2006). The problem is that these SLAM approaches

are not robust against grossly outlying local geometric constraints. Indeed the results

of the RatSLAM system, which is based on a type of embedding and not the SLAM

methods discussed here, are unprecedented.

2.4.3 Gating

The estimate of the poses determined by the embedding or the SLAM process can be used

to improve data association. From the pose estimates, the relative pose and its uncertainty

between a new image and an image in the map can be determined. This relative pose

can, on the one hand, be used to determine whether the images are likely to depict the

same structures and if it is worth comparing them. On the other hand, if the images

are compared, one can check if the resulting relative pose fits the estimated map. This

last procedure is known as gating (Neira and Tardós, 2001; Bailey and Durrant-Whyte,

2006) and has proved itself for mapping small environments such as indoor office rooms

(Davison et al., 2007). This is not the case for mapping applications in general. The

main problem is that the estimated uncertainty of the poses is usually too small. Most,

if not all, SLAM algorithms are said to be “overconfident” or “optimistic”, despite the

large amount of research in this area. If gating were to be strictly applied, then most

hypothesized loop closing links would not be accepted. This is the reason why, even

for mapping systems that aim at building geometric maps, it is common to resort to

topological data association to close loops (Newman and Ho, 2005).

Local parts of the geometric map can be used as a measure of displacement of the

robot, which can then be used to define a set of key images as described in Section 2.3.1.

It is used in Konolige and Bowman (2009) to remove redundant views from the image

set. Furthermore, in some applications it is possible to explore the environment in such

a way that no large loops are present, making gating possible. This is the case in most

underwater exploration scenarios, such as described in Eustice (2005).
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2.4.4 Discussion

View-based mapping systems could in principle benefit from geometric camera pose

information. The problem of estimating a consistent set of camera poses given local geo-

metric information can be concisely stated, yet is difficult to solve. It therefore attracted

a lot of research and resulted in a large collection of different methods. Still, most pose

estimation methods are fragile and for most applications the estimates are not suitable

for data association. There is still a lack of understanding on how to properly fuse the

qualitative information coming from image-based data association methods to estimate

robot poses.

2.5 Conclusion

This chapter gave an overview of existing view-based mapping literature. Unfortunately,

almost all studies focus on developing new methods, without performing proper compar-

isons with other work. It is, therefore, difficult to say which method will be favorable for

application in a home environment.

What can be concluded is that most of the image comparison methods combine SIFT

or SURF feature matching with some sort of local geometric check and thus, often im-

plicitly, measure how well a relative camera pose can be estimated from the images. For

efficiency and robustness, they commonly assume that the robot drives over a planar sur-

face. Also this assumption is usually made implicitly. Thus, even though there exist a

lot of methods that use the planar motion assumption, there is a lack of understanding

how to properly use the planar motion assumption to estimate the relative pose given two

images. In the next chapter, we will adress this question. After answering this question

we try to define a better founded image comparison method, that is explicitly based on

the uncertainty of the pose estimator.

Data association is commonly improved by using geometric positional information of

previous camera poses. However, we have seen that methods to estimate these camera

poses are still fragile. This will especially be the case in challenging environments such

as homes. In this thesis we will not use camera pose estimates to improve data associa-

tion. Rather, we will focus on the problem of using topological information to improve

view-based mapping. We explained that some systems solve this by applying solutions

for the graph clustering problem. We will not follow that route, but will investigate

if there is a more direct method to use topological information to improve view-based

mapping.
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3 Two-view pose estimation

assuming planar camera motion

In this chapter, we focus on comparing two images taken by a robot observing the same

scene from different positions and computing the relative pose between the two robot

poses.1 We assume that the robot is equipped with a rigidly mounted calibrated camera

under a known pose. In order to improve the robustness and efficiency, we make the

assumption that the robot moves over a planar surface. We propose a completely novel

histogram-based method to determine a probability density function over the space of

all relative poses. Being able to robustly and efficiently estimate the relative pose, is

essential for the rest of the thesis. On the one hand, the existence of a relative pose is used

to define a link between two nodes of a topological view-based map in Chapter 4. On

the other hand, the estimated relative pose can be used for goal directed robot navigation,

see Appendix B.

3.1 Introduction

In Chapter 2, we have seen that various topological and geometrical mapping approaches

are based on the ability to compare a pair of images. State of the art methods estimate

the relative pose between the two camera poses from which those images are taken. A

common way to do this, is to automatically find similar looking image points between

two images. Part of the resulting image point correspondences are the projections of

salient 3D points in the environment, called landmarks. This is used to determine the

relative camera pose, consisting of the translation and the rotation using closed form

least squares methods (Hartley and Zisserman, 2003). Actually, the scale of the relative

pose cannot be determined. It is lost during the projection step. In this chapter, however,

we use the term “relative pose” instead of “relative pose up to an unknown scale”.

A major challenge when determining the relative pose given point correspondences,

is that a large percentage of the similar looking image points do not correspond to the

same 3D landmark. They are so-called mismatches. This percentage can increase up to

100% due to changing lighting conditions, large distances between the images and big

viewpoint changes. In addition, the image point locations of correct matches are noisy.

This noise stems from various sources, such as the noise of the imaging device itself,

discretization, errors of the calibration and so on.

To cope with noise and mismatches, the closed form methods have to be combined

with so-called robust algorithms. There are 3 robust methods commonly used: RANSAC

(RANdom SAmple Consensus) (Fischler and Bolles, 1981), M-Estimators (Maximum

1Part of the work described in this chapter was presented at the Robotics: Science and Systems Conference

(Booij et al., 2010).
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likelihood Estimators) (Torr and Murray, 1997) and the Hough Transform (Hough, 1962).

State of the art relative pose estimators combine RANSAC to estimate an initial relative

pose and M-Estimators to improve it (Hartley and Zisserman, 2003; Eustice, 2005; Cum-

mins and Newman, 2009; Nistér et al., 2004). Basically, this approach tries to find a

maximum likelihood solution by first rejecting outliers, which are mismatches and cor-

rect matches with too much noise, using an error threshold. It then bases a least square

solution on the remaining correspondences, the inliers. The success of this approach

depends on the number level of noise and the percentage of mismatches (Torr and Mur-

ray, 1997; Zhang, 1998; Brückner et al., 2008; Armangué and Salvi, 2003). The Hough

Transform on the other hand, if seen probabilistically, computes the full likelihood on a

discrete grid of poses, without making an explicit distinction between inliers and outliers.

Because computer memory requirements grow exponentially with the number of param-

eters, the Hough Transform is generally not suited for pose estimation problems. How-

ever combinations of the Hough Transform with RANSAC (den Hollander and Hanjalic,

2007) do exist, as well as methods that treat rotation and translation estimation separately

(Heeger and Jepson, 1992; Censi and Carpin, 2009).

An approach to make pose estimation easier, is to incorporate constraints on the pos-

sible relative poses. If the robot drives over a planar surface, then the camera can only

rotate around a certain fixed axis which is perpendicular to the two dimensional transla-

tion direction. This is not only the case for indoor wheeled robots, but also for outdoor

vehicles driving over planar roads. We will call this constrained version of the general

pose estimation problem the planar relative pose problem. Given that there are fewer

possible relative poses for the planar relative pose problem, incorporating this constraint

results in more robust and accurate estimation process. Because the problem has fewer

parameters to estimate, the pose can in principle be estimated with fewer correct corre-

spondences than the general unconstrained pose estimation.

The question is how to incorporate the planarity constraint in a principled manner when

estimating the relative pose from point correspondences. What is the minimum number

of required correct correspondences? And how does one deal with a larger number of

correspondences which include a high percentage of mismatches?

In this chapter the application of the planar constraint for estimating the two-view

relative pose from point correspondences is investigated thoroughly. We first describe

the problem more formally in Section 3.2 and discuss previous work dealing with it. An

important aspect is the number of degrees of freedom of the planar relative pose problem

and the number of correspondences needed to solve it.

It is assumed by Ortı́n and Montiel (2001); Goedemé et al. (2005a) that the planar

relative pose problem can be solved using two correctly matched point correspondences.

However, in Section 3.3 we provide the novel insight that two correspondences some-

times could have been the result of two different relative camera poses. In other words,

the problem can sometimes not be uniquely solved using two correspondences. For uni-

formly distributed landmarks, we show that this actually happens in 50% of the cases.

We describe these cases on the basis of the position of the landmarks.

In Section 3.4, we derive the specific trigonometric functions that relate a single point

correspondence to possible relative poses that fit this correspondence. This results in

a novel closed form 2-point algorithm that given two point correspondences computes

a solution, or, if it cannot be uniquely solved, both solutions. We call this method the
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Planar Two Point algorithm.

We continue the chapter by investigating how to deal with correspondences that in-

clude a high percentage of mismatches. In Section 3.5, we briefly describe a state of

the art approach to solving the planar relative pose problem. This is a variation of the

standard approach to perform general unconstrained pose estimation. This approach

combines a linear estimator that uses a minimum of 3 point correspondences with the

RANSAC algorithm and an M-Estimator. The linear estimator can also be replaced by

our Planar Two-point algorithm.

In Section 3.6, we approach the planar relative pose problem differently. Because the

problem has only a few degrees of freedom, it becomes interesting to try a method based

on the Hough Transform and discretize and analyze the whole solution space. We show

that the votes for each relative pose in the discretized space can be learned from existing

image data using the single point correspondence relation described in Section 3.4. In this

way, the different noise characteristics are captured without explicitly modeling them.

In addition, we present an efficient implementation using a precomputed lookup table,

reducing the estimation process to simple lookups.

In Section 3.7, the different approaches are evaluated by applying them to both sim-

ulated data and real datasets. We compare the novel Hough Transform-based approach

with the state of the art RANSAC and M-Estimator method. The state of the art method

is combined with both the novel Planar Two-point algorithm, as well as the known linear

estimator. In addition, an approach for general unconstrained pose estimation is applied

to the data for comparison. For evaluation on real camera images, the datasets described

in Appendix A are used.

In Section 3.8, we discuss the qualitative benefits of the proposed methods, as well as

possibilities to improve them.

Finally, in Section 3.9, conclusions are drawn from the experiments and directions for

improvement of the proposed methods are discussed.

3.2 Two-view pose estimation - related work

In this section we describe the estimation process concerning cameras that undergo pla-

nar motion. Most existing methods that deal with the planar relative pose problem are

founded on the better known general unconstrained relative pose problem. We, therefore,

first give a description of the unconstrained problem which is then used as a basis for the

planar constrained problem.

3.2.1 The unconstrained relative pose problem

The number of degrees of freedom of the relative pose problem is 5, namely 3 for a 3D

translation, plus 3 for a 3D rotation, minus 1 for the scale ambiguity. Every point cor-

respondence in the images can remove one degree of freedom by providing one variable

of information, namely 2 times 2 for the 2D pixel locations in both images, minus 3 for

the unknown 3D position of the corresponding landmark. So, in order to resolve the 5

degrees of freedom, at least 5 point correspondence are needed. We must note that this

is not the case if these correspondences lie in a degenerate formation, for example, if the
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correspondences were projections of landmarks lying on the same line in space. In such

cases, one or more degrees of freedom cannot be resolved. See for example Maybank

(1992); Hartley and Zisserman (2003); Kanatani (1996). We will ignore these borderline

cases in this chapter.

Although 5 correspondences can resolve the degrees of freedom, they do not define

a single solution, but can be the result of up to 10 distinct relative poses (Faugeras and

Maybank, 1990; Maybank, 1992). A well-known algorithm that computes these solu-

tions in closed form is the Five Point algorithm proposed by Nistér (2004); Stewénius

et al. (2006). Algorithms using 5 correspondences are only useful when combined with

hypothesize and test schemes, such as RANSAC. This will be explained in Section 3.5.2.

Examples of robot mapping and navigation systems that use this scheme are Newman

et al. (2006); Snavely et al. (2008); Fraundorfer et al. (2007); Segvic et al. (2009).

In order to determine the single solution to the unconstrained pose problem, at least

8 point correspondences are needed (Longuet-Higgins, 1981). A well-known algorithm

that computes this solution is called the Eight-point algorithm (Hartley and Zisserman,

2003), which models the relative pose with a 3 by 3 matrix, known as the essential matrix,

and applies a relatively simple least squares algorithm. Examples of robot mapping and

navigation systems using this algorithm are Davison (1999); Basri et al. (1999); Zivkovic

et al. (2005); Mariottini and Prattichizzo (2008); Salvi et al. (2008); Elinas and Little

(2005).

One might argue that actually the Eight-point algorithm results in 4 solutions, and

likewise the Five Point algorithm results in up to 40 solutions (Nistér, 2004). This is

because these algorithms, like most other vision-based pose estimation methods, treat

light rays falling on the camera surface as lines propagating through the back of the

camera. This results in a 4 fold ambiguity (Horn, 1990). It can be easily resolved by

reconstructing the landmarks for each pose and checking for which of the poses the

landmarks lie in front of both cameras (Kanatani, 1996; Hartley and Zisserman, 2003).

In the field of Photogrammetry and later in Computer Vision, it is common to compare

different methods for relative pose estimation. A large number of overview papers have

appeared as well as literature describing comparisons with others algorithms, for exam-

ple based on 6 or 7 correspondences (Stewénius et al., 2006; Brückner et al., 2008; Ar-

mangué and Salvi, 2003). They are applied to typical Computer Vision type applications,

which are somewhat different than the typical Robot Vision applications. In Computer

Vision, images are usually acquired by a person rotating and translating the camera in

all 3 dimensions. In robotics, however, the motion is commonly constrained. Further-

more, in Computer Vision applications the camera is usually pointed towards visually

interesting scenes resulting in relatively many correspondences. In robotics, the camera

could be pointed to a blank wall, resulting in fewer correspondences and relatively more

mismatches. In this chapter, we specifically target typical robotics applications.

3.2.2 Planar relative pose problem

The constrained planar pose problem has, evidently, fewer degrees of freedom than the

unconstrained relative pose problem. The 2D rotation and 2D translation minus the scale

result in 2 degrees of freedom. As we have seen one correspondence can resolve one

degree of freedom. So, in general, 2 correspondences are needed to resolve the planar

36



3.3 Planar pose problem and the number of solutions

pose problem. However, in practice it is more common to use 3 correspondences.

Brooks et al. (1998) show that by modifying the Eight-point algorithm, a planar con-

strained essential matrix can be estimated using 3 point correspondences, which results

in a single solution. This algorithm is known as the Planar Three-point algorithm and

is used in various robot localization and navigation systems (Ortı́n and Montiel, 2001;

Kosecká et al., 2005; Valgren and Lilienthal, 2008; Ramisa et al., 2009). In most of these

studies, it is by the way wrongly assumed that at least 4 correspondences are needed. We

will see in Section 3.4.3, where the algorithm is briefly described, that 3 correspondences

suffice.

To the best of our knowledge, only two studies, namely Ortı́n and Montiel (2001) and

Goedemé et al. (2005b), resulted in algorithms that solve the planar pose estimation prob-

lem with two correspondences. The first algoritm, briefly described in Ortı́n and Montiel

(2001), is loosely based on the Three-point algorithm and uses an iterative scheme to find

a solution. A proof of convergence is not given. The second one, described in Goedemé

et al. (2005b), briefly describes a closed form solution. However, some of the insights

necessary for implementing and using the method are omitted. The Two-point algorithm

described in detail in Section 3.4.2 is partly based on this last closed form method.

These two studies did not investigate how many solutions 2 correspondences can define

and assumed that there is always a single correct solution. As we show below, this is not

the case and the proposed algorithms thus sometimes return wrong relative poses. This

problem was not revealed in the performed experiments. A reason for this could be that

the algorithms were combined with the RANSAC method, in order cope with noise and

mismatches. The RANSAC method probably also discarded the errorneous relative pose

estimates.

As opposed to the unconstrained relative pose problem, there are no papers which

focus on evaluating or comparing different planar pose methods. Further, to the best of

our knowledge, no study has used one of the 2 correspondence algorithm apart from the

papers introducing them. In this chapter we will compare the Two-point algorithm with

the Three-point algorithm and the Eight-point algorithm.

3.3 Planar pose problem and the number of

solutions

We now show that two distinct planar relative poses could result in exactly the same two

correspondences. This is done by first investigating the possible poses given one noise

free correspondence, and then given two noise free correspondences. Specific algorithms,

based on these insights, are given in the next section.

3.3.1 Solutions given 1 correspondences

Figure 3.1 depicts two robot poses: L, aligned with the world frame on the ground plane,

and R somewhere else on the ground plane. The planar relative pose up to scale between

these poses can be parameterized in different ways. We choose to parameterize it using

two angles ϑ and φ. Angle ϑ denotes the direction of the translation, or heading, of robot

R in the frame of robot L and angle φ denotes the heading of robot L in the frame of
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Figure 3.1: 3D visualization of two robots, L and R, positioned on a ground plane both

observing a landmark F . The dashed circle on the ground plane indicates

the possible positions for robot R given the pose of L and the position of

F viewing angles. Four possible robot orientation for R are drawn on the

circle. The angles αL, βL and αR, βR which with F is seen by the robots and

the projection F ′ of F on the ground plane is used to compute the possible

relative robot poses, modeled with angle ϑ and φ.
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Figure 3.2: A top view of the 2D ground plane of robot R and L seeing landmark F . In

(a) the same situation is visualized as shown in Figure 3.1, where the projec-

tion of landmark F on the ground plane F ′ is closer to R than L. In (b) F ′ is

closer to L. In both situations the angles ϑ and φ are drawn for four possible

relative robot poses.

robot R. Another common parameterization uses the heading and the rotation of robot

R in the frame of robot L, such as in (Ortı́n and Montiel, 2001). However, the proposed

parameterization reflects the symmetry of the problem.

Let us look at the way a single point correspondence constrains the possible solutions

of the planar relative pose problem. Both robots, L and R observe a landmark F under

a certain vertical angle αL and αR, and a certain horizontal angle βL and βR. The sinus

ratio of the vertical angles αL and αR defines the ratio of distances from the position of

L to F and the position of R to F . Because of the scale ambiguity we can fix the position

of F as long as the observation angles αL and βL hold.

Given the landmark position F , robot pose L and observation angles αR and βR, we

can determine the possible poses for robot R. Given the vertical observation angle αR

and the fact that the robot is confined to the ground plane, the position of the robot R
has a fixed distance to F and should thus lie on a circle on the ground plane (as shown

in Figure 3.1). For each position of robot R on the circle its orientation should be such

that βR points towards landmark F . In Figure 3.1, four possible positions with their

appropriate orientation are drawn on the circle.

The same situation as visualized in 3D in Figure 3.1 is visualized in 2D from a top

view in Figure 3.2(a). In this figure, the angles ϑ and φ are drawn for four possible

relative robot poses. Notice that robot R is closer to landmark F than robot L. In this

case, the angle ϑ is confined to a certain range of angles ϑmin < ϑ < ϑmax, as indicated in

Figure 3.2(a) by the dashed lines tangent to the circle. Angle φ, on the other hand, can

take any value in the range of 0 to 2π.

Figure 3.2(b) depicts a similar situation as in Figure 3.2(a), but here robot L is closer

to landmark F than robot R. In this case the circle of possible robot positions R encloses
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robot L. As a result the angle ϑ can now take any value in the range of 0 to 2π, while

angle φ is confined to a certain range of angles.

3.3.2 Solutions given 2 correspondences

It is clear that one correspondence could have been the result of an infinite number of

possible relative poses. As we have seen in Section 3.2.2, two correspondences will

resolve all degrees of freedom, but may still result in a finite number of solutions.

Figure 3.3 visualizes the possible relative robot poses given correspondences in an-

other way, namely by plotting φ as a function of ϑ. The specific function is not important

right now and is derived later in Section 3.4.1. What is important is the way curves re-

lated to different landmarks intersect in the 2D space of possible relative robot poses.

Say the robots observe two landmarks, F1 and F2. We know from Figure 3.2(a) that if

robot R is closer to landmark F1 than robot L, then ϑ is confined to a certain range of

angles. This can be seen by the dashed curves in Figure 3.3(a). If the other landmark F2

is closer to robot L, then φ is confined to a certain range of angles, which results in the

solid curve in Figure 3.3(a).

Now, we come to an important result. Because both φ and ϑ are periodic, the two

curves in Figure 3.3(a) intersect in at least one point. In Section 3.4.2, we will see that

this is exactly one intersection, giving a single solution to the robot pose problem. If,

however, both landmarks are closer to robot R, then both curves are confined to a certain

range of angles ϑ and must intersect in at least two points (see Figure 3.3(b)). The

same holds for the situation where the two landmarks are closer to L. We will see in

Section 3.4.2 that there are exactly two intersections.

Given the spatial arrangement of the robot and landmark positions, two point corre-

spondences resulting from these landmarks define 1 or 2 possible relative robot poses:

(
LF1 −RF1

) (
LF2 −RF2

)
=

{
> 0 → 1 solution

< 0 → 2 solutions,
(3.1)

for which F1 and F2 denote the positions of the two landmarks and XY denotes the

distance from the position of pose X to the landmark Y .

Thus, in practice if an algorithm is given 2 noise free correspondences, yet is designed

to always return a single relative pose, then this pose will be wrong in 25% of the cases.

What is needed is an algorithm that computes both solutions if there are two, which then

can be post-processed by an hypothesize and test algorithm.

3.4 Algorithms for planar pose estimation

We begin by deriving the function that relates the heading of the first robot with respect

to the second ϑ with the heading for the second robot with respect to the first φ, given

a single point correspondence. Using this function we derive an algorithm which uses

2 point correspondence to compute the solutions to the problem, sometimes returning a

single solution and sometimes two solutions. In this section we also give a short descrip-

tion of a known algorithm that uses 3 point correspondences and approaches the problem

by formulating a set of linear equations which are solved using a least squares technique.
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Figure 3.3: Visualization of the possible relative robot poses by plotting the heading φ
as a function of ϑ for different point correspondences. In (a) one landmark

is closer to R and another is closer to L, resulting in two curves intersecting

in a single point. In (b) both landmarks are closer to R, resulting in two

intersections.
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3 Two-view pose estimation assuming planar camera motion

F ′

βR

ϑ

dL

dR

βL

φ

L

R

ω

Figure 3.4: A top view of the 2D ground plane of robot R and L and the projection of

a landmark on this plane F ′. The relative pose between R and L is param-

eterized using ϑ and φ. The robots see the landmark with the horizontal

observation angles βL and βR. The ratio of the distance dL and dR can be

derived from the vertical observation angles. The relative rotation ω is used

in deriving the 3-point algorithm in Section 3.4.3.

It is again assumed that image point correspondences are obtained by a noise free

projection of landmarks (without mismatches). The point correspondences are denoted

by two sets of 3D vectors of unit length {x1, . . . ,xn} and {x′
1, . . . ,x

′
n}, with xi =

[xi, yi, zi]
T , corresponding to n landmarks seen in respectively robot L and R. This

corresponds to a projection on a sphere of radius 1 around the viewpoint of the cam-

era, which allows the application of the algorithms on different types of omnidirectional

vision systems as well as conventional cameras (Bunschoten, 2003; Mariottini and Prat-

tichizzo, 2008).

3.4.1 One-point mapping function

A function that relates φ and ϑ to a point correspondence can be based solely on trigonom-

etry. First, the 3D problem as shown in Figure 3.1 is reduced to a simpler 2D problem. In

Section 3.3, we already pointed out that the vertical observation angles αL and αR can

be used to determine the ratio of distances dL of L to projection of the landmark on the

ground plane F ′ and dR of R to F ′. The length of F to F ′ can be expressed using αL

and dL and using αR and dR (see Figure 3.1):

FF ′ = dL tan(αL) = dR tan(αR), (3.2)

which results in the following ratio of dL and dR:

dL

dR

=
tan(αR)

tan(αL)
. (3.3)

The angles α∗ can be computed from the z coordinates of the spherical image points

using

α∗ = arcsin(z) (3.4)
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3.4 Algorithms for planar pose estimation

Figure 3.4 shows the triangle defined by L, R and F ′ on the ground plane. The angle
6 RLF ′ is simply defined by the horizontal observation angle βL minus ϑ. The angles

β∗ can be computed from the x and y coordinates of the image points using

β∗ = atan2(y, x), (3.5)

where the function atan2(y, x) is a variation of the arctangent function, as implemented

in standard C, which returns an angle in the range 〈−π, π].
Angle 6 F ′RL can then be found using the Law of Sines.

sin(6 F ′RL)

dL

=
sin(βL − ϑ)

dR

,

6 F ′RL =





arcsin

(
dL

dR
sin(βL − ϑ)

)

π − arcsin
(

dL

dR
sin(βL − ϑ)

)
if dL > dR,

(3.6)

where we explicitly take the ambiguous case into account that dR is smaller than dL.

Angle φ can be determined by adding the horizontal observation angle βR, and using

Equation (3.3):

φ =





βR + arcsin

(
tan(αR)
tan(αL) sin(βL − ϑ)

)

βR + π − arcsin
(

tan(αR)
tan(αL) sin(βL − ϑ)

)
if tan(αR) > tan(αL).

(3.7)

We now find a function that expresses the angle φ as a function of angle ϑ. As we

saw in Section 3.3.2 one value for ϑ sometimes defines two possible values for φ (see for

example the dashed line in Figure 3.3(a)). We can also express angle ϑ as a function of

angle φ. The derivation of this function is analogous to that of Equation (3.7) and clearly

shows the symmetry of the chosen parameterization:

ϑ =





βL + arcsin

(
tan(αL)
tan(αR) sin(βR − φ)

)

βL + π − arcsin
(

tan(αL)
tan(αR) sin(βR − φ)

)
if tan(αL) > tan(αR).

(3.8)

We have now obtained functions that map ϑ to φ given a single point correspondence.

Using this function, we can draw curves of possible robot poses as shown previously in

Figure 3.3. In Section 3.6, we will see how this result can be used to compute a robust

estimate given multiple point correspondences.

3.4.2 Planar Two-point algorithm

This section gives the complete derivation of the novel Two-point algorithm. The deriva-

tion is again based solely on trigonometry.

We assume the two robots L and R both observe two landmarks, F1 and F2 (see

Figure 3.5). Robot L observes the landmarks with angles (αL1, βL1) and (αL2, βL2)
and robot R with angles (αR1, βR1) and (αR2, βR2). The goal is to determine 1 or 2

relative poses parameterized as (ϑ, φ) pairs. Figure 3.5 shows all variables involved in

the derivation of the algorithm.
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R

L

ϑ

βL2

δL
c2d2

e
βL1

φ

βR2

βR1

δR

λL
λR

γL

F ′
2

F ′
1

d2
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c1d1

Figure 3.5: Schematic drawings showing the variables involved in the two-point algo-

rithm. The scene is again seen from a top-view in which distances and angles

are measured only in 2D (parallel to the ground-floor).

An intuitive approach to this problem is to define two functions using Equation (3.7)

and try to substitute one in the other:

βR1 + arcsin

(
tan(αR1)

tan(αL1)
sin(βL1 − ϑ)

)
= βR2 + arcsin

(
tan(αR2)

tan(αL2)
sin(βL2 − ϑ)

)
.

(3.9)

It is difficult, if not impossible, to solve ϑ using this function. Therefore, we take a

different approach. We will try to find enough parameters of the quadrangle (also known

as a tetragon) formed by the points L-F ′
2-R-F ′

1 (as seen in figure 3.5), to compute the

angles of a triangle between one of the landmarks and the robot poses. If for example

we know the angle 6 RLF ′
1, which is denoted by γ in Figure 3.5, it is straightforward to

determine ϑ.

We can compute the angles of the quadrangle at L and R, denoted by δL and δR, by

taking the differences between both pairs of horizontal observation angles β’s:

δL = βL2 − βL1 (3.10)

δR = βR2 − βR1 (3.11)

The distances from the two views to the landmarks cannot be determined, but the ratio

between these distances can be determined using the vertical view angles as described

previously (see Equation (3.3)). Here, we introduce extra variables c1 and c2 for conve-
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3.4 Algorithms for planar pose estimation

nience:

c1 =
c1d1

d1
=

tan(αL1)

tan(αR1)
(3.12)

c2 =
c2d2

d2
=

tan(αL2)

tan(αR2)
. (3.13)

We now have enough parameters to determine the shape of the quadrangle, except

for the scale which cannot be determined from point correspondences. Without loss of

generality, we set one of the distances, namely the one from view L to landmark F ′
1, to

1:

d1 ≡ 1 (3.14)

The ratio between distances from view L to landmarks F ′
1 and F ′

2 can be computed

with the use of the distance between landmark F ′
1 and F ′

2 denoted by e. The distance

e can be expressed in two ways using the left triangle L-F ′
1-F ′

2 and the right triangle

R-F ′
1-F ′

2 by applying the Law of Cosines:

e2 = 1 + d2
2 − 2d2 cos(δL) (3.15)

e2 = c2
1 + c2

2d
2
2 − 2c1c2d2 cos(δR) (3.16)

Equating the right parts of equations 3.15 and 3.16, gives a second order polynomial in

d2:

1 + d2
2 − 2d2 cos(δL) = c2

1 + c2
2d

2
2 − 2c1c2d2 cos(δR) (3.17)

(
1− c2

2

)
d2
2 − 2 (cos(δL)− c1c2 cos (δR)) d2 + 1− c2

1 = 0 (3.18)

This can be solved using the quadratic formula:

a = 1− c2
2 (3.19)

b = −2(cos(δL)− c1c2 cos(δR)) (3.20)

c = 1− c2
1 (3.21)

d2 =
−b±

√
b2 − 4ac

2a
(3.22)

This could result in two real solutions for d2, which indicates that given two point cor-

respondences there could be two possible solutions for the relative pose. The rest of the

derivation has to be performed using both these values.

Using the distances d1 and d2 we can calculate distance between the two landmarks:

e =
√

1 + d2
2 − 2d2 cos(δL) (3.23)

Using once more the Law of Cosines the angles λL and λR can be calculated:

λL =





arccos

(
d2

2
−e2−1
−2e

)
if δL < π

− arccos
(

d2

2
−e2−1
−2e

)
if δL > π

(3.24)

λR =





arccos

(
c2

2
d2

2
−e2−c2

1

−2c1e

)
if δR > π

− arccos
(

c2

2
d2

2
−e2−c2

1

−2c1e

)
if δR < π,

(3.25)
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3 Two-view pose estimation assuming planar camera motion

where we took into account that the triangles can be acute or obtuse. The angle L-F ′
1-R,

which we denote with λ, is given by

λ = λL + λR. (3.26)

From the angle λ we can compute γL using the atan2 function to get an angle in the range

〈−π, π]:

γL = atan2(c1 sin(λ), 1− c1 cos(λ)) (3.27)

Using angle βL1 we can now compute ϑ:

ϑ = βL1 − γL (3.28)

The angle φ is computed using the triangle L− F ′
1 −R and angle βR1:

φ = βR1 + (π − γL − λ) (3.29)

The complete algorithm as given by equations (3.10)-(3.13) and (3.19)-(3.29) can be

applied to every pair of distinct point correspondences. However, for a robust implemen-

tation which handles noisy point correspondences and mismatches one has to be cautious.

Most implementations of the arccosine function return a complex number if it is called

with a variable which has an absolute value higher than 1. This could happen for some

noisy pair of point correspondences. Furthermore, it could happen that c1 or c2 becomes

negative if a point correspondence has a positive vertical angle in one view and a negative

vertical angle in the other. In both of these cases, the relative pose is undetermined and

the algorithm will output no solutions.

3.4.3 Planar Three-point algorithm

We now give a short description of a known algorithm that uses 3 point correspondences

(Ortı́n and Montiel, 2001; Brooks et al., 1998). This algorithm is based on the well-

known Eight-point algorithm, which can be used to estimate unconstrained camera mo-

tion (Longuet-Higgins, 1981; Hartley and Zisserman, 2003).

The camera motion is parameterized using a 3x3 matrix E called the essential matrix.

It can be constructed from a 3x3 rotation matrix R and a 3D translation vector t =
[tx, ty, tz]

T :

E = [t]× R, (3.30)

in which [t]× is the matrix representation of the cross product with t,

[t]× =




0 −tz ty
tz 0 −tx
−ty tx 0



 . (3.31)

An important characteristic of the essential matrix is that it relates point correspon-

dences using the following linear relation:

(x′
i)

T Exi = 0 for all i. (3.32)
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3.4 Algorithms for planar pose estimation

This can be used to estimate the nine entries of E from a set of 8 or more point corre-

spondences using the Direct Linear Transform (DLT), which works as follows (Hartley

and Zisserman, 2003). First, the linear equations are rewritten in the following form:

Ae = 0 (3.33)




x1x
′
1 · · · xnx′

n

x1y
′
1 · · · xny′

n

x1z
′
1 · · · xnz′n

y1x
′
1 · · · ynx′

n

y1y
′
1 · · · yny′

n

y1z
′
1 · · · ynz′n

z1x
′
1 · · · znx′

n

z1y
′
1 · · · zny′

n

z1z
′
1 · · · znz′n




T 


e11

e12

e13

e21

e22

e23

e31

e32

e33




= 0, (3.34)

where erc is the entry of matrix E in row r and column c.

The number of degrees of freedom of E, and thus also e, is 8, namely 9 for the 9

matrix entries minus 1 for the scale ambiguity. Thus, at least 8 linear equations are

needed and, because each point correspondence provides one equation, at least 8 point

correspondences are needed. A least square solution for E:

arg min
E

∑

i

(x′
i)

T Exi = 0 (3.35)

can be found by applying a singular value decomposition (SVD) to AT A and taking the

eigenvector corresponding to the smallest singular value.

The essential matrix has rank 2 and its first two eigenvalues are equal (Hartley and

Zisserman, 2003). The DLT algorithm does not enforce this nonlinear constraint. By ap-

plying an SVD to E giving E = USV ′ and building a new matrix E′ = Udiag(1, 1, 0)V ′

we find an essential matrix that does enforce this constraint and is normalized at the same

time. For details see Hartley and Zisserman (2003).

In case of a planar camera motion, 5 of the 9 entries of the essential matrix are zero by

definition. This can be seen by expressing E in the heading ϑ and the rotation angle ω:

E =




cos(ϑ)
sin(ϑ)

0





×




cos(ω) − sin(ω) 0
sin(ω) cos(ω) 0

0 0 1





=




0 0 sin(ϑ)
0 0 − cos(ϑ)

sin(ω − ϑ) cos(ω − ϑ) 0



 (3.36)

This formula is a common way to specify the planar constrained essential matrix (Ortı́n

and Montiel, 2001; Brooks et al., 1998; Bunschoten, 2003). The rotation angle ω relates

to φ and ϑ by

ω = π + ϑ− φ, (3.37)
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3 Two-view pose estimation assuming planar camera motion

as can be seen in Figure 3.4. Using this we can rewrite Equation (3.36) into

E =




0 0 sin(ϑ)
0 0 − cos(ϑ)

sin(φ) − cos(φ) 0



 , (3.38)

which clearly shows the symmetric relation between angles ϑ and φ.

Only the non-zero entries of E have to be estimated reducing Equation (3.34) to:




x1z
′
1 · · · xnz′n

y1z
′
1 · · · ynz′n

z1x
′
1 · · · znx′

n

z1y
′
1 · · · zny′

n




T 


e13

e23

e31

e32


 = 0, (3.39)

Computing a least square solution is similar to the non planar case, except for the min-

imal number of correspondences. The number of degrees of freedom of this reduced E
is 3, namely 4 for the 4 non-zero entries minus 1 for the scale ambiguity. Thus, only 3

point correspondences are necessary. In the next sections, when dealing with noisy cor-

respondences, we examine the error function that this least squares solution minimizes.

Now that we found the essential matrix E, we can extract the rotation R and the trans-

lation t. Each essential matrix can be decomposed in 4 possible relative robot poses

(Horn, 1990; Hartley and Zisserman, 2003). This ambiguity can be resolved by repro-

jecting the point correspondences to the world domain and checking if their reprojection

has a positive depth in both cameras, i.e. if they lie in front of the camera surfaces where

the image points were found. For the correct relative pose this will indeed be the case.

To summarize, by estimating the essential matrix a method is obtained for estimating

the planar relative pose problem using 3 point correspondences. Actually, the 3 corre-

spondences overdetermine the estimation problem which has only 2 degrees of problem

as we have shown. Thus, a least square technique is used to find a solution that best fits

the 3 correspondences.

3.5 Estimation in the presence of noise and

mismatches: state of the art

In the previous sections we assumed that image point correspondences were obtained by

a noise free projection of 3D landmarks. As we have explained in Section 3.3, from three

or more of these correspondences the camera pose can be determined. In Figure 3.6(a),

the curves of a few noise free correspondences are plotted in the camera pose solution

space and, as can be seen, all of them intersect in the same pose. In practice, image

point correspondences are automatically found by an image matching algorithm such as

the SIFT method (Lowe, 2004) as explained in Chapter 2. Each image point position

is therefore subject to a considerable amount of noise. On top of that, part of the point

correspondences are the result of mismatched image points. Figure 3.6(b) shows that

the curves in pose space resulting from these noisy correspondences do not intersect in

a single point. The question is how to determine the camera pose given these noisy

correspondences.
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Figure 3.6: Visualization of the possible relative robot poses by plotting φ as a function

of ϑ for multiple correspondences randomly picked using a relative pose with

ϑ = φ = 0. (a) Generated using 5 noise free correspondences. (b) Gener-

ated using 5 noisy correct correspondences (solid curves) and 3 mismatches

(dashed curves). Note that, by coincidence, one of the mismatches corre-

sponds to a curve close to the actual pose.

The problem can be formulated as searching for the Maximum Likelihood. Given n
point correspondences denoted as {ξ1, . . . , ξn}. Each correspondence is parametrized by

the angles ξi = (αLi, βLi, αRi, βRi). The problem is then to determine the most likely

relative pose ϑML, φML:

(ϑML, φML) = arg max
(ϑ,φ)

p(ξ1, . . . , ξn|ϑ, φ) (3.40)

= arg min
(ϑ,φ)

∑

i

− log p(ξi|ϑ, φ), (3.41)

where we make the common assumption that the observed point correspondences are

independent given the robot pose.

The term − log p(ξi|ϑ, φ) describes the negative log likelihood, and is known as the

error function. The major problem when estimating the camera pose, is that this error

function is not known. Various assumptions about the error function have resulted in

different approaches and algorithms. A common approach is to try to describe the noise

of the correspondences that resulted from correct matches with an error function and then

treat the correspondences that have a very large error as the mismatches.

In this section we explain a state of the art (Torr and Murray, 1997; Hartley and Zis-

serman, 2003) method to deal with this problem in the context of planar relative pose

estimation. The method uses explicit error functions for the correspondences resulting

from correctly matched image points, given in Subsection 3.5.1. Mismatches are dealt

with using the RANSAC algorithm to provide an initial estimate of the pose, as explained

in Subsection 3.5.2. This is followed by an M-Estimator to improve this estimate, as ex-

plained in Subsection 3.5.3. The method can be combined with both the Planar Two-point
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3 Two-view pose estimation assuming planar camera motion

algorithm described in Section 3.4.2 and the Planar Three-point algorithm described in

Section 3.4.3.

3.5.1 Error functions for correct matches

We now describe standard error functions that return the error of a measured point cor-

respondence and an estimated planar pose, given that the correspondence resulted from

a correct match. They focus on the noise that was caused by the projection process of

the 3D landmarks on the image surface. This is usually assumed to be isotropic homoge-

neous Gaussian distributed noise. The negative log likelihood is then defined as the sum

of the Euclidean distance between the image points of the correspondence and the noise

free projections of the actual 3D landmark. This measure is known as the geometric error

(Hartley and Zisserman, 2003). Unfortunately, we cannot compute it, because we do not

know the actual position of this landmark.

What we can easily compute is the so-called algebraic error (Hartley and Zisserman,

2003), which was actually already defined when writing the pose estimation problem as

a linear estimation problem in Section 3.4.3. Specifically, it is the residual of the least

square error function defined in Equation (3.39):

ri = xiz
′
ie13 − yiz

′
ie23 + zix

′
ie31 − ziy

′
ie32 (3.42)

Although this measure is easy to compute, it does not have a geometrical meaning. That

is, it is not related to the projection process of the imaging system. However, it can be

used to compute a first order approximation of the geometric error, which is known as

the Sampson distance (Torr and Murray, 1997). This is done by weighing it with the size

of its gradient with respect to the image point coordinates. For the used spherical image

representation, we assume Gaussian noise for all three axis. The gradient is then given

by:

∇ri =

(
∂ri

∂x

∂ri

∂x
′

)
=




z′ie13

z′ie23

x′
ie23 − y′

ie32

zie31

zie32

xie32 − yie23




, (3.43)

which are determined using Equation (3.42).

The Sampson distance is now given by:

di =
ri

|∇ri|
, (3.44)

where |∇ri| denotes the Euclidean norm of ∇ri.

3.5.2 RANSAC

A method that is particularly robust against a high percentage of mismatches is the

RANSAC algorithm (RANdom SAmple Consensus) (Fischler and Bolles, 1981; Torr and

Murray, 1997), which is nowadays the standard method for relative pose estimation from
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Figure 3.7: Comparison of the performance of the RANSAC when using eight, five, three

or two point correspondences, computed using Equation (3.45) while varying

the percentage of mismatches. The number of candidates N was set to the

typical value of 100.

images. RANSAC randomly picks a subset, or sample, of correspondences from which it

computes a candidate relative pose using one of the closed form estimators. An exmam-

ple is the Two-point algorithm (Section 3.4.2). For each correspondence of the complete

set we check if it fits the candidate pose, by computing its error - for example using the

Sampson distance - and checking if it is below a preset threshold. A correspondence that

fits the candidate pose is said to be an inlier. This procedure is repeated for different

random samples producing a large number of candidate poses. Finally, from these poses

the one is chosen with the highest number of inliers.

The rationale of RANSAC is that at least one of the candidate poses is computed from

only correct point correspondences and will thus be close to the maximum likelihood,

which results in a relatively large number of inliers. The probability p of RANSAC

picking at least one sample of only correct matches, can be related to the number of

samples N , the percentage of correct correspondences w, the size of the sample s and

the average number of solutions given by the closed form algorithm k:

p = 1− (1− ws)(
N
k ) . (3.45)

This is a variation of the formula given by Fischler and Bolles (1981), which lacks the

dependence on k. As can be seen, p depends exponentially on s. So it is beneficial

to choose it as small as possible. That is why it is important to use an algorithm that

needs the minimal number of correspondences. The value of k, which is usually ignored

when determining p (Fischler and Bolles, 1981; Hartley and Zisserman, 2003; Torr and

Murray, 1997), is 1.5 for the Two point algorithm (see Section 3.3.2), 2.74 for the Five

Point algorithm following (Nistér, 2004) and 1 for the others.

In Figure 3.7, Equation (3.45) is used to show the advantage of using an algorithm that

uses two correspondences instead of to the standard algorithm that uses three correspon-

51



3 Two-view pose estimation assuming planar camera motion

dences. As can be seen, the largest gain of using a Two-point algorithm is for a high

percentage of mismatches between 70% and 95%. Note, however, that the formula does

not take into account image noise. In practice correct point correspondences are noisy

and therefore pose estimates based on fewer correspondences are less accurate. This is

not taken into account in Equationr 3.45 or Figure 3.7.

The final RANSAC solution is based on only the minimal set of noisy correspon-

dences. Usually the RANSAC method is followed by an iterative algorithm that uses the

solution of RANSAC as the initial guess.

3.5.3 M-Estimators

All the inliers of the RANSAC solution can be used to compute a new pose using a closed

form algorithm that can handle an unlimited number of point correspondences, such as

the Planar Three-point algorithm. However, as we have seen, the Planar Three-point

algorithm minimizes the algebraic error instead of the geometric error. We can use the

size of the gradient of the residual with respect to the image point coordinates to make

an improved estimate of the essential matrix E∗ by computing:

E∗ = arg min
E

∑

i

1

|∇ri|
(x′

i)
T Exi = 0. (3.46)

As can be seen, E∗ depends on ∇ri, which in turn depends on an estimate of E. There-

fore, the essential matrix is estimated using an iterative scheme, which is termed itera-

tively reweighted least squares (IRLS).

Given new estimates of E we should again determine which of the correspondences are

inliers by computing their error, for example, by using the Sampson Distance. Usually,

instead of setting a hard error threshold, a sliding scale is used to weight the correspon-

dences. A common method to weight correspondences is known as Huber Weighting

(Torr and Murray, 1997):

wi =






1 di < σ
σ/di σ < di < 3σ
0 3σ < di

(3.47)

By combining this weight with the size of the gradient, we obtain the following update

formula:

E∗ = arg min
E

∑

i

wi

1

|∇ri|
(x′

i)
T Exi = 0. (3.48)

The combination of such robust weighting schemes with IRLS (Equation (3.46)) is called

an M-Estimator.

3.6 Estimation in the presence of noise and

mismatches: novel histogram-based estimator

In this section, we describe a completely novel robust method to estimate a planar pose

given noisy correspondences including mismatches. The method is based on discretizing
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Figure 3.8: Example discretized likelihood of the relative pose space (a) and log like-

lihood (b), given 5 correct matches and 5 mismatches. White bin indicate

low likelihood, while dark bins indicate high likelihood. Both ϑ, φ and c
are discretized into 256 bins, each approximately 0.025 radians wide. The

model used for generating this likelihood assumed 90% mismatches and 0.01
projection noise, as explained in Section 3.6.3. For clarity, the dashed circle

indicates the maximum likelihood in (a).

the solution space and is, in this respect, similar to the well-known Hough Transform. For

each bin in the discretized space, the likelihood of the observed correspondences is com-

puted (Subsection 3.6.1). Instead of computing the likelihood for each correspondence

on the fly, it is taken from a precomputed lookup table (LUT) (Subsection 3.6.2), which

represents the likelihood in a discretized way. The LUT is kept small by taking advantage

of the One-point mapping function described in Section 3.4.1. The likelihood could be

approximated using an error measurement function described in Subsection 3.5.1. We,

however, construct it from existing sensor measurements and groundtruth pose informa-

tion or using a simulator modeling the planar pose problem (Subsection 3.6.3).

3.6.1 Discretizing the solution space

We go back to the problem description formulated as finding the Maximum Likelihood

in Equation (3.40). Instead of evaluating the likelihood of certain selected poses, like in

RANSAC, or determining the gradient of the likelihood to improve such a pose, like the

M-Estimator does, we now take a very different approach.

Like in the well-known Hough Transform, we discretize the solution space into a grid.

In our case, this is a 2D space of relative planar poses represented by the angles ϑ and

φ. Then, the likelihood for each of the poses corresponding to the grid points is deter-

mined given the set of observations. In this way, we get a discretized likelihood over the

complete space of poses. The pose with the highest value approximates the maximum

likelihood solution. See Figure 3.8 for an example of such a discretized likelihood, given

noisy correspondences including mismatches.

Because we assume the noise of the different observed point correspondences is inde-

pendent given the relative pose, the likelihood of a set of correspondences can be com-
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3 Two-view pose estimation assuming planar camera motion

puted by multiplying the likelihoods of each single correspondence (see Equation (3.41)).

Actually, in practice we should restrain from multiplying likelihoods, because of the risk

of underflowing machine precision. Rather, we work in log space, summing the log of

the likelihoods. This is similar to the Hough Transform, which sums the so-called votes

from each correspondence. As opposed to the Hough Transform, in our approach these

votes are not 0 or 1, but we use the log likelihood to weight the votes. The question now is

how to determine the log likelihood of the different poses given a single correspondence.

3.6.2 Lookup table

For each point correspondence, we need to determine a log likelihood for all the poses

in the discretized pose space. Even if determining such a log likelihood would cost

only a limited amount of computational time, the overall computational cost quickly

grows prohibitively large. So in practice, this rules out the use of evaluating functions as

described previously in Section 3.5.1.

To solve this problem we discretize, besides all possible poses, all possible observa-

tions and precompute a lookup table of the log likelihood for each combination of obser-

vation and pose. For each new observation we can then quickly lookup the log likelihood

values for the different poses.

The log likelihood of a single correspondence ξ = (αL, βL, αR, βR) is given by

− log p(αL, βL, αR, βR|ϑ, φ). Thus, if we would naively construct such a lookup ta-

ble, it would have 6 dimensions, 4 for the point correspondence angles and 2 for the

relative pose. This would be quite impractical. In order to keep the size of the LUT

comprehensible, the 6D space should be discretized in large bins, resulting in a large

discretization error. We now show that the dimensionality of the LUT can be reduced to

only 3 dimensions by using the One-point mapping function introduced in Section 3.4

and some common assumptions about the noise.

The One-point mapping function given in Equation (3.7) can be written as

φ− βR + arcsin

(
tan(αR)

tan(αL)
sin(ϑ− βL)

)
≈ 0. (3.49)

As can be seen, the terms αL and αR are only used in the combination
tan(αR)
tan(αL) . In

addition, variables ϑ and βL and variables φ and βR are only used in the combinations

ϑ − βL and φ − βR. They describe the horizontal angles to the landmark relative to

the heading of the cameras. The joint probability of observing a correspondence under a

certain relative pose can thus be represented as:

p(αL, βL, αR, βR, ϑ, φ) = p

(
tan(αR)

tan(αL)
, ϑ− βL, φ− βR

)
. (3.50)

This holds if we assume that the noise characteristic of the horizontal and vertical view

angles of a point correspondence does not depend on actual value of that point corre-

spondence. This assumption is comparable with the common assumption that the noise

of each image point coordinate does not depend on the image point location itself.

Because of the symmetry of the representation of the relative planar pose, the two

points of the point correspondences and the heading angles can be swapped giving the
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3.6 Estimation in the presence of noise and mismatches: novel histogram-based estimator

same result:

p (r, ϑ− βL, φ− βR) = p

(
1

r
, φ− βR, ϑ− βL

)
, (3.51)

where we introduced r = tan(αR)
tan(αL) for convenience. In practice, this means that we only

have to construct a LUT for 0 < r < 1 and swap ϑ− βL with φ− βR and use 1
r

instead

of r if r > 0.

The likelihood can be determined from the joint probability by dividing by the proba-

bility of the pose p(ϑ, φ):

p(ξ|ϑ, φ) = p(αL, βL, αR, βR|ϑ, φ) (3.52)

= p(αL, βL, αR, βR, ϑ, φ)/p(ϑ, φ) (3.53)

= p

(
tan(αRi)

tan(αLi)
, ϑ− βLi, φ− βRi

)
/p(ϑ, φ). (3.54)

Usually, during the construction of the LUT, one takes care that the different relative

poses are uniformly distributed, making the likelihood proportional to the joint probabil-

ity:

p(ξ|ϑ, φ) ∝ p

(
tan(αR)

tan(αL)
, ϑ− βL, φ− βR

)
. (3.55)

It is now straightforward to construct a LUT from one of the error functions described

in Section 3.5.1, by evaluating the function for the different poses and point correspon-

dences. However, those measures do not take mismatches into account. In Section 3.6.3,

we will show how to construct a LUT from existing data including mismatches. Fig-

ure 3.9 visualizes an example 3D lookup table that was constructed using data from a

simulator.

The LUT can now be used to efficiently determine the bin of the most likely relative

pose given a set of correspondences. For each correspondence ξi, we compute the value

of
tan(αRi)
tan(αLi)

and pick the corresponding 2D slice of the lookup table. Then, we shift

it in the direction of βLi and βRi, wrapping the values at the borders. This results in

the negative log likelihood of each bin given a correspondence. By summing up nega-

tive log likelihood of each correspondence, we obtain the negative log likelihood over

the discretized pose space. This is used to find the Maximum Likelihood solution (see

Equation 3.40). Algorithm 1 summarizes this procedure.

Algorithm 1 Maximum likelihood estimator using a LUT

HIST← 2D array of zeros

for all correspondences {αL, βL, αR, βR} do

compute r = tan(αR)
tan(αL)

HIST += LUT(d(r)) shifted by d(βL) and d(βR)

where d(·) denotes discretization

end for

ML-solution← bin2value(bin with highest value in LUT)
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Figure 3.9: A few slices of a 1283 bin lookup table representing the likelihood obtained

from simulated data as denoted in Section 3.6.3. Again, white bin indicate

low likelihood, while dark bins indicate high likelihood. This likelihood was

also used throughout the experiments. The simulator and data used are de-

scribed in Section 3.7. In (a) one can see that point correspondences with a

r value close to zero, do not tell that much about the data. This is due to the

fact that there is a high chance that it resulted from a mismatch. Note that the

histogram corresponding to a r value close to 1 in (f) is almost symmetric.

Indeed, if r is exactly 1 then r = 1
r

and we could swap φ and θ.
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3.6 Estimation in the presence of noise and mismatches: novel histogram-based estimator

3.6.3 Constructing a lookup table from data

The LUT can be constructed using an explicit error function. However, as we have

seen, one can usually only approximate the true error using a first order approximation.

Furthermore, it is difficult to model mismatches in the error function. We describe a

different approach, which uses existing datasets of images correspondences with their

ground truth poses. First, we explain how this can be achieved with a simulated model.

Secondly, we show how to use real image data.

Simulated model

Sets of correspondences seen from different relative robot poses, can be generated using

a simulator modeling the planar pose problem. When building such a simulator, one can

use prior knowledge about the specific robot and the environment. In the following part,

a minimalistic simulator is described which will also be used in the experiments.

The simulator consists of a set of randomly picked landmarks and random robot poses.

For each iteration, a random point cloud of 3D landmarks is picked uniformly distributed

inside a sphere of size 2 around the origin. For each run, two random camera poses on a

circle with radius 1 in the x-y plane around the origin are chosen. From the two camera

poses, the ground truth values for ϑ and φ is determined. Note that the distribution of ϑ
and φ is approximately uniform.

A set of point correspondences is constructed by projecting some of the landmarks on

a spherically shaped image surface with a radius of 1 around the camera pose. Thus,

an ideal omnidirectional camera model is used with a full 360 degrees view angle in the

horizontal and vertical direction.

An amount of normally distributed noise with zero mean and standard deviation 0.01
is added to these projections. This noise is not specified in the number of pixels, but

in the space of the spherical image surface. For comparison, the value .01 corresponds

to an angular error of approximately .57 degrees, which corresponds to about 6 pixels

for a typical conventional mega pixel camera with a focal length of 8 cm. This amount

of noise may seem quite large. However, it is not only used to model the noise of the

imaging device itself, but also accounts for the simplifications of the camera model, the

calibration errors and errors of the image key point extractors.

In addition, mismatches are added to the set of point correspondences by creating false

correspondences between projections of different landmarks. We use a mismatch rate of

90%.

The end-result is a large set of relative poses (ϑ, φ) and associated correspondences ξ.

From these
tan(αR)
tan(αL) , ϑ− βLi and φ− βRi are computed, and are put in a 3D histogram.

Finally, each value is replaced by its negative log, resulting in a proper LUT.

The advantage of using a simulator is that we can easily generate large numbers of

correspondences. In practice, the number of correspondences should be a few orders of

magnitude larger than the number of bins in the LUT. Using the simple model described

above we could generate 5 ∗ 1010 samples in less than 10 hours, see Figure 3.9 for a

visualization of this 3D lookup table with 1283 bins.
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3 Two-view pose estimation assuming planar camera motion

Real image data

The drawback of using a simulator is that the used model will always only approximate

real world data. Therefore, we now explain how real image data with ground truth relative

pose data can be used. We assume that there is already a set of relative poses, each

associated with a set of point correspondences extracted from the image pairs.

The main problem of using this data is that the relative poses are in general not uni-

formly distributed. This will cause the simplification proposed in Equation (3.55) to

become invalid and moreover, will result in a bias in the LUT towards certain poses

which are overrepresented in the dataset. However, we can easily compensate for this

problem as follows.

When constructing the LUT, we explicitly take the probability of the relative pose into

account (see Equation (3.54)). In a first step, a 2D discretized probability p(ϑ, φ) is

constructed by making a histogram for all poses in the dataset and normalizing it. Then,

in a second step, the dataset is used to build the 3D LUT in the same manner as for the

simulator, with the difference that for each pose correspondence it adds 1
p(ϑ,φ) to the 3D

histogram. Again, each value of the histogram is replaced by its negative log, resulting

in a proper LUT. Algorithm 2 summarizes the procedure to build a LUT. To keep the

algorithm comprehensible, it ignores the symmetry between ϑ and φ.

A second problem, which cannot be circumvented, is that the amount of data in an

image dataset is limited. As a consequence, we usually can not construct a LUT with

a very large number of bins. In the next section, we evaluate, among other things, the

consequences of such a smaller LUT.

Algorithm 2 Constructing a LUT from real data

PosePrior← 2D array of zeros

for all training data {ϑ, φ, αL, βL, αR, βR} do

PosePrior(d(ϑ), d(φ)) += 1

end for

LUT← 3D array of zeros

for all training data {ϑ, φ, αL, βL, αR, βR} do

compute r = tan(αR)
tan(αL)

LUT(d(r), d(ϑ− βL), d(φ− βR)) += 1/ PosePrior(d(ϑ), d(φ))

end for

LUT← - log each entry of LUT

3.7 Experiments

The algorithms for planar relative pose estimation are evaluated using both simulated

data, coming from a simple robot and camera model and real images from the datasets

described in Appendix A. The focus is on comparing our Two-point algorithm with

the Three-point and Eight-point algorithms, all in combination with RANSAC and M-

Estimators and the histogram-based method. The methods are compared on the basis of

their robustness against mismatches and noise.
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3.7.1 Error measures

As is common in pose estimation literature, we evaluate the heading angle and the ro-

tation angle (Nistér, 2004). The error of these estimated angles is computed by taking

the absolute difference with the ground truth heading and rotation as in Stewénius et al.

(2006). See Appendix A for a description of how ground truth data was obtained for the

real home datasets. Because these error values are not normally distributed, mean errors

and standard deviations are not that descriptive. Therefore, we mainly use the median

to describe the location of the error distribution. In order to show the significance of the

results, it is common to plot confidence intervals. To obtain these, every experiment is

repeated 10 times with new data, each time determining a new median. A robust way to

describe the spread of these medians is to use the Median of Absolute Deviations (MAD)

which is given by:

MAD(X) = mediani (|xi −medianj(xj)|) . (3.56)

Another important evaluation criterion is the computational time used by the algo-

rithms. For all experiments, we report these times. However, we should note that eval-

uating the computational times of computer algorithms is difficult. It depends greatly

on the way they are implemented and the computer architecture they run on. For these

experiments, all algorithms were implemented in C++ and run on the single 2 Ghz CPU

core of a Pentium PC.

3.7.2 Experiments on simulated data

First, the different approaches are applied to simulated data, which allows us to control

the projection noise and number of mismatches. It also allows us to add some non planar

camera motion, simulating a ground floor that is not level or inclination of the robot.

Experimental setup

A lookup table was constructed using the simulator as described in Section 3.6.3. The

number of bins to represent φ, ϑ and r were all 128, which caused the computational time

to be comparable with that of the RANSAC + M-Estimator combined with the 3-point

algorithm. The number of point correspondences used was 1010, which took three hours

to build. The error threshold for both RANSAC and the M-Estimator were set according

to the projection noise of the simulator. Test data was picked using the same simulator

as described in Section 3.6.3, which used a mismatch rate of 90%.

Resulting distributions

The distribution of errors is given in Figure 3.10. The accuracy of the histogram-based

method is higher than that of the state of the art method. In addition, it is clearly visible

that both distributions have long tails, showing the need of describing them using robust

statistics.
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(a) Heading error of 3pt RANSAC + M-Estimator.
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(b) Heading error of LUT.

Figure 3.10: Comparison of the heading error of RANSAC + M-Estimator combined

with the Planar Three-point algorithm and the proposed LUT ML method

for 90% mismatches. The distribution of rotation errors shows a similar

pattern.

Sensitivity to mismatches

To test the robustness of the different methods to mismatches we vary the number of mis-

matches, from 50% to 99%. In total, 105 iterations were conducted. In Figures 3.11(a)

and 3.11(b) the resulting estimation errors are plotted.

Both the heading and rotation results show the same trend. The error of the RANSAC

+ M-Estimator with the 8-point algorithm, which does not take planarity into account,

increases rapidly when more than half of the correspondences are mismatches. The

RANSAC + M-Estimator with the 3-point is always better than the 2-point version. and

3-point algorithm behave similarly and start diverging at 65% mismatches. Note that the

3-point version is always slightly better than the 2-point version. The accuracy of the

rotation estimates of the histogram-based estimator is higher than both the RANSAC +

M-Estimator variants at more than 50% mismatches. For the heading estimates this is

the case at more than 65% mismatch.

Sensitivity to violations of the planar assumption

In practice the motion of a robot is never strictly planar. Therefore, we test the behavior

of the algorithms when small rotations with axes parallel to the ground floor are added

to the poses. We built two separate LUTs for this experiment. The first one, denoted

with “LUT-con” was created using the conventional simulator described in Section 3.6.3

using 107 simulated correspondences. The second one, denoted with “LUT-rot”, was

also created with that simulator but in addition rotations were added about the two robot-

axes parallel to the ground floor both up to .25 radians. This last LUT thus reflects the

error resulting from slightly non planar motion.

In Figures 3.11(c) and 3.11(d), the median errors are plotted against the amount of

pitch and roll, for a mismatch rate of 60%. As can be seen at an angle of .3 radians
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the combination of RANSAC and the Three-point algorithm, as well as the LUT-con

method have the same or worse error as the combination of RANSAC with the Eight-

point algorithm which is not influenced by non planar motion. Note that this corresponds

to a percentage-grade of 31%, which is not realistic in a lot of robotic applications. It can

be seen that the LUT-rot method, learned to be more robust against non planar motion.

3.7.3 Experiments on real data

The different approaches are also applied to real data, taken by an omnidirectional vision

system in challenging home environments. The number of mismatches will vary sub-

stantially from almost 0% for consecutive image to 100% for images taken in different

rooms.

Experimental setup

From every dataset described in Appendix A, we use every pair of camera images. It

could however be that the pair of images was shot at the same position because the robot

stood still and rotated on the spot. In that case, the heading cannot be determined. We

discard these image pairs. Furthermore, if images are taken at more than 5 meters apart,

then the chance of finding point correspondences is small. So we also discard these pairs.

Still, for each set there are around 106 image pairs left.

To extract point correspondences from the image pairs, the SIFT algorithm is used

(Lowe, 2004). First, omnidirectional images are mapped to panoramic images (Bun-

schoten, 2003), from which the SIFT feature points are found. These features are de-

scribed by the standard SIFT descriptor of 128 dimensions. If two features in the same

image have a small distance in descriptor space then they are removed. A set of point

correspondences between two images is determined by applying the standard matching

scheme as described in Lowe (2004). This resulted in on average 25 matches per image

pair. The groundtruth relative pose was computed from the groundtruth robot positions.

Sensitivity to mismatches, trained with simulated data

In order to evaluate the performance of the methods, we would like to vary the number

of mismatches. This cannot be controlled in real data, therefore we made subsets of the

data on the basis of the distance between the poses. We assume that for larger distances it

is more difficult to find matching features. For the Histogram method we first use a LUT

constructed using the simulator described in Section 3.6.3 and see how well it compares

to state of the art methods. In Figure 3.12(a) and 3.12(b), the heading and rotation error

of the different methods is plotted as a function of the distance between the images for

the Almere 4 dataset . It is clear that on a whole the errors are much larger than was the

case for the simulation data. This is partly due to the fact that some of the views were

obstructed by furniture, walls or people walking in the environment.

In the plot of the heading error (Figure 3.12(a)), one can see that the RANSAC + M-

Estimator combined with the Two-point algorithm is outperformed by the Three-point

algorithm version, which in turn is clearly outperformed by the Histogram method for

distances larger than 1.5 meters. The accuracy of the RANSAC + M-Estimator combined
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(a) Heading errors, simulation data
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(b) Rotation errors, simulation data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 LUT ML 128 con
 LUT ML 128 rot

 RANS+M-Est 8pt
 RANS+M-Est 3pt

amount of non−planar rotation in radians

(c) Heading errors, non planar simulated data
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Figure 3.11: Comparison of the different relative pose estimators using simulated data.

(a) and (b) show the heading and rotation errors for different numbers of

mismatches. (c) and (d) show the heading and rotation errors for different

amounts of non-planar motion. The MAD statistic is used to draw confi-

dence intervals of the medians.
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(a) Heading errors, Almere 4
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(b) Rotation errors, Almere 4
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(c) Heading errors, Spaan 1
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(d) Rotation errors, Spaan 1

Figure 3.12: Comparison of the different relative pose estimators using real images.

In 3.12(a) and 3.12(b) the errors are shown for the Almere 4 dataset. For

this test the LUT was built using a simulator. In 3.12(c) and 3.12(d) the

errors are shown for the Spaan 1 dataset. For this test the LUT was built

using images from the Almere 4 dataset. The MAD statistic is used to draw

confidence intervals of the medians. However, these intervals are relatively

small, and hard to see in the graphs.
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3 Two-view pose estimation assuming planar camera motion

Table 3.1: Average computational time usage per relative pose estimate in milliseconds

for the different methods.

Hist ML RANS+M-Est

1283 643 323 163 8pt 3pt 2pt

1.3 0.28 0.07 0.036 3.6 3.8 0.68

with the Eight-point algorithm is not that bad as compared to the methods taking the

planarity constraint into account. This could have been caused by the fact that the robot

was leaning over when accelerating, slightly violating the constraint. For the rotation

error (Figure 3.12(b)), the improvement of the Histogram method over the RANSAC +

M-Estimator with Three-point method is less pronounced.

Sensitivity to mismatches, ingtrained with real data

Next, we constructed a lookup table using all the image pairs of the Almere 4 set that

were within a 5 meter distance and applied it to the Spaan 1 set. We used two different

bin sizes, the first had 1283 bins and the other 163. The Maximum Likelihood solutions

based on these two tables were compared to the RANSAC + M-Estimator combined

with the Three-point algorithm and solutions given two LUTs based on the simulator,

also with dimensions 1283 and 163.

In Figure 3.12(c) and 3.12(d), the results are shown. As can be seen, the overall

accuracy is less than for the Almere 4. A reason for this could be the motion blur,

caused by the bad illumination of this dataset. The histogram with 1283 bins based on

the simulator performs best, followed by the 1283 bins LUT-based on the real images.

Probably this is due to the limited number of point correspondences in the real image set.

For the much smaller LUTs with 163 bins, this seems to be less problematic, visible by

the improvement of the LUT-based on real images over the one based on simulated data.

Averages over the data sets

Application on other datasets and different bin sizes resulted in comparable errors. Fig-

ure 3.13 summarizes these results. Note that all three RANSAC-based methods failed to

robustly estimate poses for the difficult Biron 1 set in contrast to the proposed method.

Bin size vs CPU time

To evaluate the influence of different bin sizes for the lookup table, we tested the His-

togram method for different numbers of bins. In Table 3.1, the average computational

time in milliseconds is given per image pair for the Almere 4 set (other datasets showed

similar trends). As can be seen, small lookup tables result in a large speed-up, but this

comes at the cost of a larger error (see Figure 3.12). The RANSAC + M-Estimator com-

bined with the Planar three point algorithm is three times slower than the Histogram

method with 1283 bins.
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(a) Heading errors
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(b) Rotation errors

Figure 3.13: (a) Heading errors and (b) rotation errors for the different estimators applied

to all three datasets. The MAD-based confidence intervals are omitted, be-

cause they were very small and hard to see.

3.8 Discussion

An important advantage of the histogram-based pose estimator is that it provides a full

likelihood over the discretized space of possible relative poses. Thus, apart from com-

puting a Maximum Likelihood solution as shown in the Experiments section, this could

make the method useful for a range of other applications.

The proposed method could be readily applied to particle filter-based robot localization

schemes (Gross and Koenig, 2004), where each hypothesized robot pose can be weighed

by the likelihood given newly acquired images. On top of this, geometric SLAM could

benefit from the proposed method. If needed, a parametric uncertainty model of the

Maximum Likelihood can be estimated easily from the full likelihood. This could, for

example, be achieved by fitting a Von Mises or mixture of Von Mises distributions on the

discretized likelihood space (Bishop, 2006).

Another task that is very much suited for the proposed example is that of topological

mapping. Some state of the art topological mapping approaches use proper probabilistic

data association techniques to compare pairs of images (Cummins and Newman, 2009).

However, in addition they apply ad hoc rules to check whether the matched point cor-

respondence fit in a certain local geometry by computing the relative pose. Because of

the probabilistic nature of the proposed method, it is straightforward to combine it with

these proper data association techniques, ending up in a fully probabilistic topological

mapping method.
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3 Two-view pose estimation assuming planar camera motion

3.9 Conclusion

In this chapter we have investigated the planar relative pose problem thoroughly. By

doing so, we have provided some new insights and developed some powerful algorithms.

The most interesting insight is that two point correspondences do not always define a

single planar relative pose, but half of the time define two relative poses. We developed

a novel algorithm that computes the single or double solution in closed form from two

point correspondences.

We continued by developing algorithms for the planar pose problem that can cope with

noisy data including large percentages of mismatches. This resulted in a combination of

existing robust estimators, including RANSAC and the M-Estimator, with known error

functions adapted for the planar pose problem. Furthermore, we have shown the advan-

tage of discretizing and analyzing the complete solution space. In the planar motion case

this is two dimensional. Probabilistic methods were proposed that learn the likelihood

over this space from a training set of representative images. Experiments on challenging

image sets acquired in real homes showed a 20% increase in accuracy with respect to

state of the art methods consisting of a planar constrained RANSAC and M-Estimators.

In addition, an efficient technique was presented for building a concise lookup table

of the likelihood. This reduces the estimation process to simple lookups. Computing a

full likelihood given two images costs as little as 36 microseconds, in comparison to the

3 milliseconds RANSAC uses. This could even be improved, for example, by using a

multi-resolution approach as described in Olson (2009a), in which a small lookup table

is used to isolate candidate areas for the ML solution. These are then investigated further

using a bigger lookup table. Another possibility is implementing the method on a GPU,

which can much more quickly manipulate 2D histograms.
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4 Image similarity for view-based

mapping

In Chapter 2, we have seen that state of the art image similarity measures based on local

image features often use local geometric constraints to discard falsely matched features.

Implicitly, this results in a measure that reflects how well relative pose information can be

extracted from point correspondences. In the previous chapter, we developed a new al-

gorithm to estimate the relative pose. In this chapter, we propose a new image similarity

measure based on this pose estimation method. Because the developed pose estimation

method of Chapter 3 determines a full likelihood over the complete space of possible

relative poses given the point correspondences, we can also compute the probability of

the most likely relative pose. This probability is used to define a measure of image sim-

ilarity. We compare it with other state of the art similarity measures: a simple approach

based on feature matches, a RANSAC-based approach and the Bag Of Words approach

FABMAP.

4.1 Introduction

In most, if not all, view-based mapping systems it is necessary to determine whether

two images partly depict the same structures of the environment (Eustice, 2005; Torralba

et al., 2003; Konolige and Bowman, 2009). An image similarity function that determines

the similarity of two given images is the basic tool to perform this task (Datta et al.,

2008). The quality of the resulting view-based maps depends for a large part on the

robustness of this function.

Popular similarity functions used in view-based mapping systems base the image simi-

larity on the number of point correspondences found. In order to discard falsely matched

image points, it is common to first estimate a relative pose from the correspondences

using the robust RANSAC algorithm and then discard correspondences that do not fit

this pose (Eustice, 2005; Newman et al., 2006; Fraundorfer et al., 2007; Konolige et al.,

2009). In the related semantic place recognition task, this same technique is commonly

used to measure the similarity betweeen images of buildings and touristic sites (Segvic

et al., 2009; Chum and Matas, 2010; Li et al., 2008; Philbin et al., 2007).

In the previous chapter, we already discussed two problems with RANSAC. First,

it requires an explicit error model that describes the noise characteristics of the vision

sensor. Second, it makes an explicit distinction between inliers and outliers using a hard

threshold. An additional problem, which we will explain in detail in this chapter, is that

counting the number of inliers does not give a proper measure of image similarity. It is

not a probabilistic measure, making it inappropriate to combine with other probabilistic

methods, such as for example the FABMAP method (Cummins and Newman, 2008).
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4 Image similarity for view-based mapping

In Chapter 3 we have developed a completely different method for determining the

relative robot pose, given that the robot moves over a planar ground floor with a rigidly

mounted vision system. The method learns the noise characteristics in the form of a non

parametric likelihood using a set of training images and their ground truth poses. We

have shown that the resulting most likely relative poses are more accurate than the poses

determined by state of the art methods. Because it estimates the full likelihood over the

space of all relative poses, we also have access to a full density estimate1 of the relative

pose given the correspondences.

In this chapter, we use this full density estimate of the estimated pose as a measure of

image similarity and compare it with the state of the art RANSAC-based method and the

FABMAP 2.0 method. As in the previous chapter, image sets of the home environments

are used. In Section 4.2, we describe both the state of the art RANSAC-based method

as well as our new algorithm. To compare the algorithms, we have to establish a way

of evaluating the image similarity results. In Section 4.3, we review existing evaluation

criteria and define the two criteria we use in the experiments. In Section 4.4, we evaluate

how well the similarity measures perform in a semantic place recognition setting. We

conclude the chapter with a discussion in Section 4.5 and a conclusion in Section 4.6.

4.2 Image similarity measure

In this section, we first give a definition for the popular RANSAC-based image similarity

method. We will see that this method has some fundamental problems. To overcome

these, we propose a similarity measure based on the novel pose estimation method based

on lookup tables, described in the previous chapter.

4.2.1 RANSAC-based similarity measure

The RANSAC-based similarity measure works as follows. First, invariant local im-

age features are extracted from the images i and j, for example using the SIFT or

SURF method. These are matched to find a set of nij local point correspondences

{ξ1, . . . , ξnij
}. Given these correspondences, we can already define a simple feature-

based similarity measure (as used in for example (Andreasson et al., 2008)):

SF
ij =

nij

1
2 (Fi + Fj)

, (4.1)

where Fi and Fj are the numbers of features found in respectively image i and image j.

This measure can be improved by applying geometric constraints on the correspondences

as follows. From the correspondences, a relative camera pose (ϑR
ML

, φR
ML

) is estimated

using a combination of least square estimators and robust methods (as explained in the

previous chapter in Section 3.5). The most important step in this estimation process is

discarding the usually large number of outliers which are mostly caused by mismatched

1Because we discretize the solution space in a finite number of bins, it is perhaps better to use the term

probability mass function. We will however use the term density, because the underlying variables are

continuous.

68



4.2 Image similarity measure

(a) Two images with four feature matches

(b) Possible robot poses causing the matches

Figure 4.1: A visualization of a degenerate formation of point correspondences between

two images (a) and a possible relative camera pose given these correspon-

dences (b).

image features. This step is generally performed using the RANSAC method, which was

described in Section 3.5.2.

The similarity between the two images is based on the number of point correspon-

dences that fit the resulting estimated relative camera pose. Whether a correspondence ξ
fits a relative pose is determined using a distance measure d

(
ξ, (ϑR

ML
, φR

ML
)
)
. This com-

monly approximates the reprojection error of the correspondence given the relative cam-

era pose (see for example (Hartley and Zisserman, 2003)). In our experiments, we will

use the Sampson distance as given in Section 3.5.1. If this distance is below a preset

threshold c, then it is said to fit the relative pose. The final similarity value is determined

by dividing the number of fitting correspondences with the average number of features

found in both images as in Equation (4.1). To summarize, the similarity value SR
ij be-

tween image i and image j is defined as follows:

SR
ij =

1
1
2 (Fi + Fj)

∑

k

H
(
d

(
ξk, (ϑR

ML
, φR

ML
)
)
− c

)
, (4.2)

where H(·) denotes the Heaviside step function.

The rationale of this similarity function is that it determines the ratio of the number

landmarks in the scene that can be seen in both images with respect to the total number

of landmarks in the images. Let us look more closely how this method works out in

practice.

An explicit distinction is made between correspondences that resulted from the same

landmark depicted in the two images and the correspondences that were caused by, so-

called, mismatches. This distinction is made on the basis of the pose estimation result,

and therefore depends on the success of the pose estimation procedure. It is known,

however, that this pose estimation sometimes fails. A common problem is that the corre-

spondences can lie in a degenerate formation.
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4 Image similarity for view-based mapping

Figure 4.1 visualizes such a degenerate formation. In Figure 4.1(a) two images are

visualized. In the image on the left all features are close to each other. In the right

image, however, the features are spread more or less uniformly over the image plane.

In Figure 4.1(b) a relative camera pose is visualized that can explain this set of point

correspondences. The camera equipped robot on the right is surrounded by landmarks,

while the robot on the left is standing far away seeing all landmarks at more or less the

same angle. Actually, it does not matter how the features are distributed in the right

image. They will approximately fit the visualized camera pose and most of them are

counted as correct matches. This causes the similarity value to be artificially high with

respect to the similarity values of sets of point correspondences which do not lie in a

degenerate formation.

Such degeneracies can actually be detected. In the example of Figure 4.1, it does not

matter where the left robot is positioned, as long as it is far from the right robot position.

Thus, there are multiple camera poses for which the correspondences fit. The estimated

pose is actually not that distinctive. The pose estimator indeed tried to find the relative

pose that was most likely relative camera pose. So, how can a similarity function take

into account whether the estimated relative camera pose is rather distinctive or not at all

distinctive?

This can be answered easily using some basic probability theory. We should divide the

likelihood of the point correspondences, given the estimated relative camera pose, by the

sum of the likelihoods given all possible poses. The problem with the RANSAC-based

similarity method is that it only provides the likelihood for a specific relative camera pose

and thus this normalization cannot be performed.

4.2.2 LUT-based similarity measure

In the previous chapter, we have developed a new method to estimate the likelihood of

the relative camera pose given a set of point correspondences. By discretizing the space

of all possible relative poses and efficiently computing the likelihood of each pose, we

obtained an estimate of the likelihood over the complete space of poses. We used this

discretized density function to estimate the relative camera pose that was most likely by

selecting the pose with the maximum likelihood:

(ϑL
ML

, φL
ML

) = arg max
(ϑ,φ)

p(ξ1, . . . , ξn|ϑ, φ). (4.3)

In this chapter, the full distribution is used to normalize the probability of the maximum

likelihood. This is done by applying Bayes’ rule. In this way, we obtain a similarity mea-

sure which takes into account degenerate formations of the set of point correspondences:

SL
ij = p(ϑL

ML
, φL

ML
|ξ1, ..., ξn)

=
p(ξ1, ..., ξn|ϑL

ML
, φL

ML
)p(ϑL

ML
, φL

ML
)

p(ξ1, ..., ξn)

=
p(ξ1, ..., ξn|ϑL

ML
, φL

ML
)p(ϑL

ML
, φL

ML
)∑

ϑ,φ p(ξ1, ..., ξn|ϑ, φ)p(ϑ, φ)
, (4.4)

where we use the sum rather than the integral to indicate that the estimated likelihood is

represented by a discretized density function. In our case, the prior relative pose p(ϑ, φ)
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4.3 Evaluation criteria

is taken to be uniform, as is the case for the estimated full likelihood. Thus Equation (4.4)

can be simplified :

SL
ij =

p(ξ1, ..., ξn|ϑL
ML

, φL
ML

)∑
ϑ,φ p(ξ1, ..., ξn|ϑ, φ)

. (4.5)

This similarity measure does not only solve the degeneracy problem. It also gives

a more appropriate measure for view-based mapping applications. Namely, it measures

the probability that we can estimate the local relative geometry between the camera poses

given two images. This is clearly relevant for applications, such as view-based SLAM

and view-based robot navigation. In this chapter, however, we focus on the task of topo-

logical mapping which is not directly related to pose estimation. In the experiments in

Section 4.4, we compare it with the RANSAC-based measure. However, first we have to

define a proper evaluation scheme.

4.3 Evaluation criteria

Before applying the described similarity measures, we have to define useful evaluation

criteria for our application. In this section, we first describe the current practice with

respect to evaluating view-based topological mapping methods. We then describe the

two evaluation criteria we use in the experiments.

4.3.1 Related work

In the related semantic place recognition task it is common to evaluate methods quanta-

tively. The common scheme, as used in most content-based image retrieval applications,

is to assign a single semantic label - such as “kitchen” or “Paris” - to each of the im-

ages (Torralba et al., 2003). This assignment is usually done by hand (Russell et al.,

2008), sometimes aided with additional information such as GPS data or the sequential

order of the images (Zheng et al., 2009; Zivkovic et al., 2008). Image pairs with the

same label are then regarded as being similar. This same approach is often used to eval-

uate view-based topological mapping methods (Ulrich and Nourbakhsh, 2000; Pronobis

et al., 2010; Kosecká et al., 2005). However, as discussed in Chapter 1, there is a mis-

match between these tasks.

A rigorous quantitative evaluation method for the task of view-based topological map-

ping itself does not exist. Commonly, ground truth positioning data is used to evaluate

image pairs with a high similarity value. For example, Valgren and Lilienthal (2010) de-

scribe how images taken more than 10 meters apart should have a similarity value below

a certain threshold. In Cummins and Newman (2009) this distance is set to 40 meters.

Such a measure only takes account of the distance between the camera poses and disre-

gards other properties, such as viewing direction, walls blocking the view of the camera

or the average distance to visual features.

In Cummins and Newman (2008) ground truth similarity was determined by checking

image overlap by hand. This was achievable for the particular image set used in their

evaluation, because the camera was looking perpendicular to the driving direction and

the viewed scene was at more or less the same distance throughout the robot trajectory.

In general, however, such an approach would lead to subjective evaluation results.
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4 Image similarity for view-based mapping

In Frese and Neira (2009) a dataset is proposed which includes hand-labeled associ-

ations of artificial white circles placed on the ground and seen in the images. This data

was used for example in Olson (2009b) to evaluate a view-based mapping procedure. A

drawback of this dataset is that the circular objects are all put on the same plane, namely

the ground floor. Because of this, the resulting sets of correspondences actually are de-

generate cases (Kanatani, 1996).

In the field of image registration, which is commonly used for fusing medical images

taken from the same patient, a similar kind of evaluation has to be performed. However,

in this field researchers resort to hand-labeled data through the means of control points to

evaluate different methods (Zitova and Flusser, 2003). In order to keep the experiments

objective and reproducible, we will abstain from using subjective hand-labeled data.

4.3.2 Our evaluation measures

In our application, we use the image similarity measure to find links in a topological

view-based map. In Chapter 1, we explained that such a link indicates that two images

depict an overlapping part of the environment. Thus, we should evaluate if the found

image similarity values are indeed high if such an overlap exists, and low if it is not.

Note that some non-overlapping parts of an environment could be visually indistinctive

from each other. In such a theoretic case, even the perfect image similarity measure

cannot reach 100% accuracy. However, we consider only practical situations and real

image similarity measures.

The problem is that the concept of depicting an overlapping part is ill defined. Specifi-

cally, in the home environments which are the focus of this thesis, we might assume that

different rooms do not contain any overlap. However, in the datasets used in our experi-

ments, the doors of the rooms were always open. Images taken in a certain room could

therefore also depict small parts of other rooms in the house. The only case for which

we can be sure that no overlap exists, is if the two images were taken in different homes.

This evaluation criterion is used in experiments in Section 4.4. This evaluation measure

is very similar to the standard labeled place recognition method, with the difference that

we avoid ambiguities in the labeling process.

A drawback of this evaluation measure is that links found between nodes in the same

house are always regarded as correct, even if they were based on only false point cor-

respondences and could not have resulted in a reliable pose estimate. We can formulate

a stricter evaluation criterion of a view-based link, by using the fact that the similarity

values should give an indication of the success of the pose estimation.

We can easily evaluate the success of the pose estimation method, by comparing the

estimated poses with the ground truth poses, which are available for the home datasets.

Given a certain error bound we can determine whether the pose was successfully esti-

mated or not. In the experiments, we only apply a bound on the estimated rotation and

not the estimated heading. We have done this because the ground-truth rotations are more

reliable than the ground-truth headings.

Using this stricter evaluation measure we can compare the RANSAC-based similarity

measure with our proposed method. The stricter evaluation criterion can falsify links

between images that were taken in the same home. Nevertheless, note that it does not
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falsify all false links. By accident an estimated pose given two images could be close to

the ground truth, even if based on only false feature matches.

4.4 Experiments

In these experiments, we evaluate different similarity measures in a place recognition

setting. The similarity measures should find a high similarity value for pairs of images

that were taken in the same home and a low similarity value for pairs of images taken in

two different homes. This allows us to compare the discussed similarity measures based

on pose estimation, namely the RANSAC-based method and the LUT-based method,

with other measures proposed specifically for solving this task, namely a simple feature-

based method without geometric constraints and FABMAP 2.0. Thus, besides evaluating

the new LUT-based method, the experiment evaluates if measures which are actually

based on the ability to estimate the relative camera are indeed good similarity measures

for solving the task of place recognition, as claimed in Chapter 2. In addition we evaluate

if the similarity measures that use relative pose estimation, find a high similarity value

for image pairs for which the estimated pose is indeed correct.

4.4.1 Evaluation measures

The results of the experiments will be presented and evaluated in a couple of ways.

In topological mapping literature it is common to visualize the results as connectivity

graphs, using the ground truth camera positions to place the different nodes (Konolige

et al., 2009). Each image pair with a similarity value above a chosen threshold, is plotted

as a link in a graph connecting the corresponding two nodes. In our case the positions

of the camera in a certain home is accurately known. Yet relative positions between

different homes are not defined (the distance between Amsterdam and Bielefeld is not

measured). Therefore, we artificially position nodes from different places far apart.

A more concise presentation, which is also used in place recognition literature (Ran-

ganathan and Dellaert, 2007), is the confusion matrix. In our case, this is a symmetric

square matrix where the rows and columns denote the different homes. Each element is

filled with the total number of links from the home corresponding to its row to the home

corresponding to its column. The main diagonal of this matrix represents the correctly

matched image pairs per place; the true positives (TP home). The off-diagonal entries rep-

resent the matched image pairs of different places; the false positives (FP home).

For both the confusion matrices and the graphs we should choose a threshold for each

similarity measure. A fair way to do this, is to choose it in such a manner that the number

of matches is equal among the different measures.

A way to present the results independently from the chosen threshold, is using ROC

curves (Receiver Operator Characteristic) that express the recall against the false alarm

rate by varying the threshold value. The recall for the home recognition evaluation is

defined as

recall =
TP home

P home
, (4.6)

with the number of positives P home defined as the total number of correct image pairs in
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4 Image similarity for view-based mapping

the dataset:

P home =
∑

label

nlabel(nlabel − 1)/2, (4.7)

where nlabel is the number of images taken in the same room “label”. Note that we regard

all image pairs taken in the same house as positives, although part of them have no visual

overlap. This objective measure will therefore result in a relatively low ROC as compared

to other studies where a stricter set of positives was hand-picked (Valgren and Lilienthal,

2010; Cummins and Newman, 2009).

The false alarm rate for the home recognition evaluation is defined as:

false alarm rate =
FP home

N home
(4.8)

with the number of negatives N home defined as the total number of incorrect image pairs

in the dataset:

N home = ntotal(ntotal − 1)/2− P home, (4.9)

with ntotal the total number of images.

A similarity measure with an overall higher ROC curve thus results in more correct

matches and fewer incorrect ones. For most robot applications, it is also interesting

to look at the onset of the ROC curve. The onset corresponds to a false alarm rate of

zero, which is preferable for most mapping applications. Wrong links are commonly

catastrophic.

For the RANSAC and the LUT methods, additional ROC curves are computed using

the more strict evaluation measure by determining if the pose estimation was successful.

An estimated pose is deemed correct if the estimated rotation is within .5 radians of the

ground truth rotation. For the total number of negatives and positives, the same values

are used as for the home recognition based ROC curves.

Finally, as in the previous chapter, the computational cost of the methods is an impor-

tant evaluation measure.

4.4.2 Data

Like in the previous chapter, we use the images acquired in the real homes (see Ap-

pendix A). The three image sets are joined to form a set of 5147 images in total. From

these we randomly picked a set of 13 ∗ 105 image pairs, 10% of all possible image pairs.

Of these image pairs, around 5 ∗ 105 are from the same home and should thus get a

high similarity value and 8 ∗ 105 are from two different homes and should thus get a low

similarity value.

From these image pairs, sets of point correspondences are created in a similar fashion

as described in Section 3.7.3. In order to cope with the large number of image pairs, the

images were compared using SURF features with a small descriptor of only 32 values.

These are more efficient and require less storage capacity than SIFT features.

4.4.3 Similarity measures

The following similarity measures are compared:

74



4.4 Experiments

Features A simple feature-based measure, in which the number of point correspon-

dences found by comparing the SURF features is normalized by the average num-

ber of features found in the two images (see Equation (4.1)). This method does not

apply relative pose constraints.

RANSAC The state of the art method as described in Section 4.2.2 and 3.5, based on

the number of inlying SURF features which uses a combination of the RANSAC

algorithm, an M-estimator and the Planar Three-point algorithm. This number is

again normalized by the average number of features (see Equation (4.2)).

LUT128 The novel similarity measure proposed in Section 4.2.2, based on the dis-

cretized full likelihood estimate of Section 3.6, with a lookup table of 1283 bins

(see Equation (4.5)). The lookup table was constructed using all the image pairs of

the Almere 1 dataset, which was taken in the same home as the Almere 4 dataset,

yet following a different path and under lower dynamic conditions.

LUT16 The same as LUT128, but with a lookup table of 163 bins.

FABMAP The mapping method FABMAP 2.0, described in Cummins and Newman

(2009) that does not use relative pose constraints. We should note that FABMAP

is actually more than an image similarity measure, because it uses some additional

information based on the sequential nature of the images (as discussed in Sec-

tion 2.3.2). In addition, it assumes that sequential images are non overlapping.

Therefore, we used a subset of the image set, as advised in the FABMAP software

documentation, using only every 10th image. This results in a total of 515 images,

which in turn resulted in about 13 ∗ 104 image pairs.

4.4.4 Results: connectivity graphs and confusion matrices

In Figures 4.2 to 4.4, the connectivity graphs - resulting from the different similarity

measures - are plotted. In the top left of the graph, on finds the links associated with

Biron 1 set. In the top right, one sees the links associated with the Spaan 1 set and at the

bottom those of the Almere 4 set. The nodes of the graph, which denote the images, are

not plotted to avoid clutter in the figures. For each graph, except the one in Figure 4.4,

we plotted the 30,000 links with the highest similarity values. The color intensity of the

plotted link indicates the height of the similarity value.

Most of the measures result in properly looking connectivity graphs, where a lot of

links are found between images that were geometrically close to each other. Table 4.1

gives the confusion matrices associated with the connectivity graphs.

The Features method (Figure 4.2(a)) resulted in 179 wrong links between the Biron

1 and Almere 4 set. Most of the falsely linked images of Almere 4 were taken in a

small hallway, which had few visual features like the Biron home. The RANSAC-based

graph (Figure 4.2(b)) also has 3 of these bad links. In addition, some of the linked images

within the Biron 1 set are from non-adjacent rooms and thus, most probably, based solely

on mismatched image features.

The LUT128-based graph (Figure 4.3(a)) does not link images of different homes.

Furthermore, there seem to be few links between non-adjacent rooms. The LUT16-based

graph (Figure 4.3(a)) looks very similar but has a single erroneous link.
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4 Image similarity for view-based mapping

(a) Features

(b) RANSAC

Figure 4.2: Connectivity graphs of 30,000 links, based on (a) the purely Feature-based

similarity measure and (b) the state of the art RANSAC-based similarity mea-

sure.
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(a) LUT128

(b) LUT16

Figure 4.3: Connectivity graphs of 30,000 links, based on the two LUT-based similarity

measures using lookup tables of (a) 1283 bins and (b) 163 bins.
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Figure 4.4: The connectivity graph of 3,000 links based, on the FABMAP similarity mea-

sure.

Table 4.1: Confusion matrices for the different similarity measures of the top 30.000 im-

age pairs.

Almere4 Spaan1 Biron1

Features

Almere4 11432 0 179

Spaan1 0 5866 0

Biron1 179 0 12523

RANSAC

Almere4 12630 0 3

Spaan1 0 6375 0

Biron1 3 0 10992

LUT128

Almere4 14350 0 0

Spaan1 0 8840 0

Biron1 0 0 6810

LUT16

Almere4 14313 0 1

Spaan1 0 8992 0

Biron1 1 0 6694

FABMAP

(3000 pairs)

Almere4 1790 40 328

Spaan1 40 306 143

Biron1 328 143 393
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Table 4.2: The number of correctly found image pairs at zero false rate of the different

methods, corresponding to the onset of the ROC curves. (*) Note that the

FABMAP method was applied to only 10% of the image pairs and thus this

result should be multiplied by 10 when compared with the other methods.

Method Features RANSAC LUT128 LUT16 FABMAP

# error free 16377 26402 30189 27314 430∗

As described in Section 4.4.3, the FABMAP method was applied to considerably fewer

images, resulting in a 10th of the number of evaluated image pairs. For fair comparison,

only 3,000 links are plotted (Figure 4.4). These, however, include a lot of false links.

Looking more closely, it appears that most of these false links originate from only a few

images. Inspection of the position data revealed that the robot was moving relatively

slowly, while taking these particular images. This might have influenced the results.

4.4.5 Results: ROC curves given home recognition

Figure 4.5 shows the ROC curves of the different methods, based on the home recognition

evaluation. The complete ROC curves (Figure 4.5(a)) show that in general there is not

much difference between the performance of the different similarity measures, except for

the FABMAP method, which has a considerably lower performance. For most mapping

applications, however, it is more interesting to see the behavior of the measures at low

false rates.

Figure 4.5(b) shows the first 10% of the recall, which corresponds to about 5∗104 cor-

rect image pairs, and 0.03% of the false rate, which corresponds to about 240 image pairs

between different homes. It can be seen that the RANSAC and the LUT measures have

more or less the same performance with a slight advantage for RANSAC. The Features

and FABMAP methods are clearly less accurate.

Table 4.2 gives the onsets of the ROC curves. That is: the number of correctly found

image pairs, until the first incorrect image pair is found. The FABMAP result seems

particularly low, but this is partly artificial because it used only a tenth of the image set.

4.4.6 Results: Precision-Recall curves given pose estimation
success

In Figure 4.6, the ROC curves for the RANSAC and LUT methods are plotted based on

evaluating the estimated poses. As can be seen, the RANSAC method has a slightly lower

false alarm rate for very low recall values. For higher recall values, however, the LUT128

and LUT16 methods outperform the RANSAC method. At 0.07 recall, which amounts

to about 32.000 correctly estimated camera poses, the false alarm rate for RANSAC

was about 0.00086, corresponding to 750 incorrect poses, while the LUT16 method had

a false alarm rate of 0.00033, corresponding to 287 incorrect poses. The LUT128 is

slightly better than the LUT16 method for relatively low recall rates up to 0.08.
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Figure 4.5: The ROC curves given the home recognition application. (a) shows the com-

plete ROC curves. (b) zooms in on the first 10% of the recall with the first

.03 % of the false rate.
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Figure 4.6: The ROC curves based on successfully estimated relative poses.

Table 4.3: Average computational time usage per image pair in milliseconds for the dif-

ferent methods.

Features RANSAC LUT128 LUT16

- 0.1 0.2 0.01

4.4.7 Computational time

For all of the similarity measures, the amount of computational time is dominated by the

matching of image features which took on average .3 ms per image pair. As explained in

Chapter 2 matching techniques - such as the Bag of Words method - can greatly improve

the efficiency of matching image features. In Table 4.3, we therefore report only the

computational cost of the similarity measure given a set of point correspondences.

Thus, the Feature method, only has to evaluate Equation 4.1 with known values and

thus incurs close to zero computational cost. The RANSAC method is faster than the

LUT128 method, which seems to contradict the results found in Table 3.1 of Chapter 3.

However, in those experiments only geometrically close image pairs were used which

on average have much more feature matches. The run-time complexity of the RANSAC

method is almost linear in the number of feature matches, while the LUT-based methods

have the extra overhead of processing the lookup table. For the LUT16 method, this

overhead is clearly much smaller.
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4.5 Discussion

The results show that both the RANSAC and the LUT-based similarity measures out-

perform the FABMAP and the simple feature-based method. The performance of the

LUT-based method itself is slightly better than the RANSAC-based method, especially

when taking into account its low computational cost.

Nevertheless, the LUT-based similarity measure does not have the advantage of using

the total number of features found in the images. The RANSAC and the simple feature-

based methods do use this value as a normalization term. We do not apply this same ad

hoc normalization technique in the LUT-based similarity measure, in order to keep the

similarity values probabilistically sound. Note that extracting two times the number of

matches from the total number of found features, results in the number of features found

in the images that do not result in a match. It would be interesting to investigate how this

information of the number of unmatched features can be incorporated in the similarity

measure in a probabilistic way.

Indeed, an advantage of the LUT-based similarity measure is that the similarity values

are probabilistically relevant. Each similarity value approximates the probability that the

ground truth pose falls in the two dimensional histogram bin associated with the esti-

mated pose. The approximation is thus performed by choosing the bin with the highest

probability. We could also have chosen to make the measure independent of the bin size

of the LUT by, somehow, marginalizing over all bins in the histogram.

4.6 Conclusion

In this chapter, we proposed a method to measure image similarity for view-based map-

ping. The method is based on the planar pose estimation approach introduced in Chap-

ter 3, which efficiently uses lookup tables (LUT) to compute a discretized density func-

tion over the space of possible relative camera poses.

Experiments on the datasets taken in real home environments demonstrate that the

performance of the new method is better than the commonly used RANSAC-based sim-

ilarity measure. The ROC curves show that at zero false rate, the LUT-based method

with 1283 bins finds 14% more links than the RANSAC-based approach. Even with a

much smaller LUT with 163 bins the performance is still 3.5% better. The experiments

also confirm that, for the view-based mapping task, image similarity measures that use

geometric constraints, including the RANSAC and the LUT-based methods, outperform

feature-based methods, including FABMAP.

However, the main advantage of the proposed method over existing methods is its

efficiency. If a small 163 bin LUT is used, then the average time to determine a accurate

similarity value based on a set of point correspondences is only 10 microseconds. This

is 10 times faster than the popular RANSAC-based method. In practice this means that

during mapping more images can be compared with newly taken images. This makes it

possible to create larger view-based maps.

There is also a theoretical advantage of the proposed method over existing methods.

The image similarity measure is based on the ability to estimate the relative pose be-

tween the camera poses given two images. Most specifically, the similarity value is the
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probability that the estimated relative camera pose is correct. This is clearly relevant

for applications such as view-based SLAM and view-based robot navigation. Because

of this probabilistic nature, it should be relatively straightforward to incorporate it in

existing probabilistic frameworks used for geometric mapping.
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connected dominating sets

In this chapter, a new and practical method is developed to solve the localization and

mapping task for view-based topological maps.1 Both tasks require an efficient solution

for the data association problem as described in Chapter 2. We approach this problem

by comparing a new image with only a small subset of the complete set of images in

the map. We propose the use of the Connected Dominating Set technique as a solution

for choosing such a minimal set of key images that still represents the complete map.

This method is used in Appendix B and Appendix C to efficiently perform goal-directed

navigation and mapping. It can be combined with the image similarity measure, based

on the geometric estimation method described in Chapter 4.

5.1 Introduction

In Chapter 1, we introduced the view-based topological map consisting of a graph. Each

node in this graph denotes an image taken by the robot. Each link between two im-

ages denotes that they partly depict the same structures of the environment and a relative

camera pose up to scale can be estimated. In Chapter 2, we have discussed some im-

age similarity measures that determine whether two images can indeed be linked. In

Chapter 4, we proposed our own efficient and robust similarity measure.

The constructed view-based topological map can be used for a variety of tasks, such as

goal-directed navigation and human robot interaction, and can be extended using newly

acquired images. At the basis of these tasks is the ability to localize where the robot

is in the map given a new image. This involves solving the data association problem

(Thrun, 2002; Durrant-Whyte and Bailey, 2006). We have seen in Chapter 2 that the data

association problem for view-based topological maps involves finding the images in the

map that depict an overlapping part of the environment as seen in the new image. In

practice, this means that the image similarity values between pairs of images exceed a

certain threshold. In this chapter, we will call the images for which this is indeed the case

“matching images” or “matches”.

View-based topological localization can be defined as finding at least one of the matches

given a new image. This match gives a rough idea of the localization of the robot in the

map. We will call this type of localization “coarse localization”. In most applications,

however, we would want to find as many matching images in the map as possible. This

is, for example, the case when the map is extended with a new image and we want to

1The work described in this chapter was published in the Journal Robotics and Autonomous Systems (Booij

et al., 2009).
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add links to all matching images in the map. We define this type of localization as “fine

localization”.

The effort necessary to perform both types of tasks scales linearly with the size of the

map, making perfect localization practically impossible for realistic scenarios. Localiza-

tion for view-based maps can be performed more efficiently by considering only a small

selection of previously acquired images that gives a good representation of the complete

set. The images in this small selection are called “key” images. For a fine localization

this can be followed with an extra step by using the matching key images to search more

locally for more image matches.

However, it is unclear what constitutes a good representative subset of a collection of

images. In Section 2.3, we have already seen approaches to picking such a subset. For

example, by uniformly sampling the images based on elapsed time or robot displacement.

A better approach is to use the structure of the graph, effectively performing a kind of

sampling in the space of images (Zivkovic et al., 2005; Li and Kosecká, 2006; Valgren

et al., 2007). This means that parts of the environment where images are harder to match,

for example, because of bad lighting conditions, should be represented with more images

than parts where a lot of images match each other.

In this chapter we propose a view-based localization approach based on a graph theo-

retic method called the “Connected Dominating Set” (CDS) (Guha and Khuller, 1998).

A CDS denotes a subgraph that contains the minimal number of nodes that still covers

the complete graph. In other words, each node in the complete graph is either in the

subgraph or linked to one of the nodes that is in the subgraph. This concept is commonly

used for broadcasting tasks in large networks of computers. It was first proposed for the

task of robot localization in Booij et al. (2006). Later it was used in Anati and Daniilidis

(2009) in a robot mapping application and in Snavely et al. (2008) for estimating the 3D

geometry of famous buildings or tourist sites.

In Section 5.2, we describe the problem of finding key images given a view-based

topological map using a real world example. We then give the definition of the Connected

Dominating Set in Section 5.3, and show that it exactly solves the problem of finding key

images. In Section 5.4, we describe our algorithm including implementation details to

compute an approximate CDS which has a linear complexity with respect to the number

of images. In Section 5.5, the CDS algorithm forms the basis for both a coarse and a fine

localization method by combining it with an hierarchical data association scheme. For

a view-based topological mapping system the CDS algorithm is used as a starting point,

by determining a new set of key images for each newly acquired image.

In Sections 5.6 and 5.7, the real home datasets are used to evaluate both the localization

method and the mapping method. In both cases, evaluation will focus on the efficiency

and accuracy with respect to an exhaustive localization or mapping scheme in which

new images are compared with all images. Finally, we investigate how the CDS-based

methods compare to other techniques of picking key images. Our conclusions are given

in Section 5.8.
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B

C
A

D

?

Figure 5.1: An example of a view-based topological map with 17 images taken in a home

environment. Images depicting overlapping parts of the environment are

linked. A new image shown at the bottom is taken in this same environ-

ment. To perform localization based on this new images or add it to the map,

matching images have to be found. The problem is: with which of the images

in the map must one compare the new image, such that the minimum number

of images are compared while finding the maximum number of matches?
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5.2 Problem statement

Figure 5.1 shows an example of a view-based topological map and a new image taken in

the same environment. To perform localization using this new image, we could compare

it with all images in the map. For such a small environment with only a few images this

is possible. However, commonly view-based maps contain thousands of images, making

it necessary to consider a subset of all images. The problem is with which of the images

in the map to compare the new image, such that the minimum number of images are

compared while finding the maximum number of matches.

In this example, some of the images have quite some overlap. If two images are

indeed very similar, it would suffice to compare the new image with only one of them.

This overlap is actually encoded in the links connecting the images. Groups of images

that are fully connected to each other will have a large overlap with each other, and could

be represented with only a few images. At the same time, images with only few links are

rather unique. It is becoming clear that we can use the structure of the graph to pick key

images.

A well-known example that uses this structure is the spectral clustering method. In

Zivkovic et al. (2005); Li and Kosecká (2006); Valgren et al. (2007) this is used to cluster

the graph in a set of subgraphs, each containing images which are visually similar. An

image can be picked per cluster, resulting in a set of key images. However, spectral

methods are known to be complex and computationally intensive. On top of this, the

question remains which images should be chosen to represent each cluster. In the next

section we propose a different method that directly gives a set of key images.

5.3 Connected Dominating Sets

To find a set of key images using the structure of the view-based map, we make the

assumption that the new image is approximately the same as at least one of the images

in the view-based map. This is true if the images taken from the environment densely

sample all possible images that the robot could take. If this is the case, then we can define

a minimal set of images for which at least one image matches the new image.

If the new image is approximately the same as an image in the map then it will also

match all the images that are linked to this same image. If the new image in Figure 5.1,

for example is approximately the same as images “A”, then it will also match image “B”

“C” and “D”. Thus, to find a first match for the new image, it suffices to compare it with

one of the images “A”, “B”, “C” or “D” and ignoring the other three. This holds for all

images in the map. It would suffice to compare the new image with a set of key images,

which has the property that every image in the map is either linked to a key image or is a

key image itself.

This is exactly the definition of a Connected Dominating Set (CDS), a concept origi-

nating from graph theory commonly used for broadcasting in large networks (Guha and

Khuller, 1998).

Remember that the topological map can be seen as a graph G = (V, S), in which a

node v ∈ V represents an image and a link (u, v) ∈ S represents that the two images

which correspond to node u and v match. Two linked nodes are also called neighbors of
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each other. A Connected Dominating Set V ′ is defined as follows: the set of nodes in the

Dominating Set V ′ is a proper subset of the original set V , such that every node u in the

original set V is either in the Dominating Set V ′ or linked to a node in V ′:

∀u ∈ V : u ∈ V ′ ∨ ∃v ∈ V ′ : (u, v) ∈ S (5.1)

A Connected Dominating Set V ′ is a dominating set that is also a connected subgraph

of the complete graph G, when combined with the existing links S. This also allows

efficient path planning and robot navigation to be performed, using the nodes in the

CDS.

The problem now is to find a CDS with the minimal number of nodes to compare as

few images as possible. Such a CDS is called a minimal CDS. Note that a graph could

have multiple minimal CDSs, for which we have to find one. This task is, however,

known to be NP-complete. Fortunately, algorithms exist that can find a good approxi-

mation and have a computational complexity in the order of the number of nodes of the

graph (Guha and Khuller, 1998). Most of these algorithms first remove links to make a

spanning tree with as many leaves as possible and then define the set of all non-leaves as

the approximate minimal CDS. In the next section, we describe the algorithm used in the

experiments.

5.4 Determining a CDS

In Guha and Khuller (1998) a number of algorithms are proposed that find a CDS with

close to the minimum number of nodes using computation time in the order of the number

of nodes in the graph. We first describe how this algorithm works conceptually and then

give a detailed explanation of its implementation.

5.4.1 Approximation algorithm

We focus on one of them, which we name the “GuhaCDS” algorithm2. We slightly mod-

ify the original algorithm so that it can cope with disconnected graphs. This modification

is needed, because in rare occasions the graph is not connected. Usually, this is caused

by a single image that did not match any other image, for example, because the view of

the camera was blocked by persons walking near the robot.

We explain the GuhaCDS algorithm, using a small example graph shown in Figure 5.2

and a simple coloring scheme:

1. color every node of the graph white (Figure 5.2(a));

2. choose a white node with the highest number of neighbors;

3. color this node black and color all white neighboring nodes gray (Figure 5.2(b));

4. choose a gray node that has the most links leading to white nodes (node 2 in Fig-

ure 5.2(c));

2This algorithm is called “Algorithm 1” in Guha and Khuller (1998).
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Figure 5.2: A simple example describing the approximation algorithm.
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Figure 5.3: A more involved example graph describing the CDS implementation. See the

text for an explanation.

5. if no such gray node exists, go to 2;

6. go to 3 until there is no white node left;

7. the black nodes now compose the Connected Dominating Set (Figure 5.2(d)).

Naively implementing this algorithm will result in a computation time that is quadratic

or even cubic in the number of nodes. However, it allows for an implementation with

linear complexity as explained in the next section.

5.4.2 Efficient implementation

In Guha and Khuller (1998) one can find an explanation of how the GuhaCDS algorithm

can be implemented to use an amount of computation time linear in the number of nodes.

This is done by using a datastructure that maintains the number of white neighbors for
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Figure 5.4: The evolving datastructure for the example describing the CDS implementa-

tion. See the text for an explanation.

each gray node. The datastructure is implemented as an array of doubly linked lists,

where each list contains gray node indices with the same number of white nodes.

As with the algorithm itself, we explain this technique using an example graph shown

in Figure 5.3. The changes in the datastructure are shown in Figure 5.4. We use a graph

of 13 nodes with some links. At a certain point, node 0 is colored black (Figure 5.3(a))

and thus neighboring nodes {1,2,3,4} are colored gray. The datastructure then contains

an array of 3 doubly linked lists, one for gray nodes with 1 white neighbor, one for 2

white neighbors and one for 3 white neighbors (see Figure 5.4(a)). In the next time

step, the gray node with the most white neighbors is picked. This amounts to picking

one of the nodes in the last list of the data structure. In this example, this is node 2.

Node 2 is colored black and all its white neighbors are colored gray (Figure 5.3(b)).

The datastructure is then updated accordingly. First node 2 is removed, because it is

no longer gray, and nodes 1 and 3 are removed from the datastructure, because all their

white neighbors are now gray (Figure 5.4(b)). Node 4 is moved to a different list because

it has lost one white neighbor. Then the new gray nodes that have white neighbors are

added to the datastructure (Figure 5.4(c)).

Because the datastructure is implemented as an array of doubly linked lists, all adding

and removing operations can be performed in constant time. Actually, being perhaps

overly specific, the operations are performed in amortized constant time, because the

growing array occasionally needs to be relocated in memory. The number of changes

needed is a function of the number of gray nodes and the average number of links between

the nodes. Thus, the computation time for one time step does not depend on the total

number of nodes in the graph. To search for neighboring gray nodes in the datastructure,

we maintain an extra array. This array keeps the number of white neighbors for every

gray node, so we know in which of the lists to search. To speed this up even further,

an array of pointers could be added for each node that points to the specific node in the

datastructure.
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Figure 5.5: Comparison of the size of the CDS for different algorithms. The histogram

indicates the mean value and the error bars indicate the standard deviation for

100 random graphs.

5.4.3 Discussion

A variant of the GuhaCDS algorithm is proposed in Guha and Khuller (1998) which

we call the “Greedy GuhaCDS” algorithm3. Although this algorithm is slightly more

involved, it has the advantage that an upper bound is given for the number of nodes of

the CDS it computes.

The Greedy GuhaCDS is based on the approach as the GuhaCDS algorithm, but in-

stead of coloring one node black per iteration, it sometimes colors two nodes black, look-

ing one node ahead. This is accomplished by replacing steps 3 and 4 by the following

steps:

3a. color the chosen node or the two chosen nodes black and color all white neighbor-

ing nodes gray;

4a. choose a gray node or a gray node and neighboring white node, which ever results

in the most new gray nodes.

However, the existence of an upper bound for the number of nodes of the CDS does

not guarantee that the number of nodes is lower than the simpler GuhaCDS method.

In practice this indeed seems not the case. We applied the algorithms including the

efficient implementation of GuhaCDS to a set of randomly created graphs. The graphs

consisted of a 400 nodes and 1000 links. In Figure 5.5, the average size and standard

deviation is shown for the different algorithms. The naive and efficient implementations

of GuhaCDS are not significantly different. The Greedy GuhaCDS, however, resulted

in larger CDSs. To see the increase in efficiency of the efficient implementation of the

GuhaCDS algorithm, see Figure 5.6.

3This algorithm is called the “Modified Greedy Algorithm” in Guha and Khuller (1998).

92



5.5 Solving localization and mapping

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

C
o
m

p
u
ta

ti
o
n
al

 t
im

e 
in

 s
ec

o
n
d
s

na
iv

e 
A

lg
 1

fa
st

 A
lg

 1

m
od

if
ie

d 
gr

ee
dy

fa
st

 A
lg

 1

Figure 5.6: Comparison of the computation time used by the different algorithms. The

histogram indicates the mean value and the error bars indicate the standard

deviation for 100 random graphs.

5.5 Solving localization and mapping

From an existing view-based map, we can now compute a set of key images. This set can

directly be used for a coarse localization, by comparing a newly captured image with the

images in the CDS and using the matching CDS nodes as the topological localization.

This scheme can also form the basis for an incremental mapping scheme which adds

images to a growing map. New links are added to the map from new images to matching

images that are already in the map. In this section, we propose methods based on the CDS

algorithm for a fine-grained localization method and an incremental mapping system.

5.5.1 Hierarchical fine localization

Localization in a view-based topological map was defined as finding those nodes in the

graph for which the image matches newly acquired images. By matching a new image

with the set of CDS images, we can already find some of theses matches, which would

result in a coarse localization. However, sometimes a more fine-grained localization is

required, involving more matching images. The matching CDS images indicate where to

look for those additional matching images

To determine as many matching image pairs as possible, the new image is compared

with all the images that are linked to matching CDS images. Going back to the example

given in Figure 5.1: If image A was in the CDS and matched the new image, then images

B, C and D are also compared to the new image. See Algorithm 3 for an overview of

the complete localization method.
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Algorithm 3 Hierarchical fine localization

localization L = ({})
Take a new image Ic

V ′ = computeCDS(G)

for all CDS nodes v′ in V ′ do

if match(Iv′ , Ic) then

Add match: L← {L, v′}
end if

end for

for all nodes v in V do

if node v links to a matching CDS node v′ ∈ L: (v, v′) ∈ S then

if match(Iv, Ic) then

Add match: L← {L, v}
end if

end if

end for

5.5.2 Incremental mapping

The CDS algorithm can also be used for an incremental topological mapping method. For

each newly acquired image, a node is added to the map. The fine-grained localization

method is then performed for the new image and links are added from the new node to

the found nodes.

This scheme can be used to incrementally map a complete environment repeating the

process for each new image. It can, however, be improved by assuming that images are

acquired in a sequence. This is often the case in robot mapping scenarios, as explained in

Section 2.3. Each new image is usually similar to the previously acquired image. Thus,

there is a relatively high chance that it also matches images that matched this previous

image. Therefore, we modify the localization step not only to compare it with images that

are linked to matching CDS images, but also those linked to CDS images that matched

the previously taken image. Pilot experiments have shown that this results in an increase

of (on average) 9% of image comparisons. In Algorithm 4, an overview of the complete

incremental mapping method is given that uses this modification of the localization step.

Note that the mapping method determines a new CDS for each newly acquired image

that best represents the set of images at that moment. This is needed because the minimal

CDS can change considerably after adding a new node. It can even lead to a decrease

in the number of CDS nodes, because newly added images can potentially represent a

much larger set of images than the images taken previously. The incremental mapping

methods could be improved by modifying the GuhaCDS algorithm to take advantage of

the previously computed CDS. This is not considered in this thesis, since the computation

time of the efficient CDS implementation was negligible.
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5.6 Experiment: view-based localization using real data

Algorithm 4 Incremental hierarchical mapping

graph G = (V, S) = ({}, {})
repeat

Take a new image Ic

Add current node c to graph V ← {V, c}
V ′ = computeCDS(G)

for all CDS nodes v′ in V ′ do

if match(Iv′ , Ic) then

Add link: S ← {S, (v′, c)}
end if

end for

for all nodes v in V do

if there is a node v′ ∈ V ′ that links to v: (v, v′) ∈ S
and links to c or p: (v′, c) ∈ S ∨ (v′, p) ∈ S then

if match(Iv, Ic) then

Add link: S ← {S, (v, c)}
end if

end if

end for

Current node becomes previous node: p← c
until end of mapping

5.6 Experiment: view-based localization using real

data

The developed localization method based on the CDS algorithm can be used to perform

a robot localization on a topological map given a new image. To evaluate the method,

we use the image datasets described in Appendix A. The developed method is compared

to other view-based localization schemes for both the coarse localization task and the

fine-grained localization task.

5.6.1 Aim of the experiment

The CDS method finds images in a large view-based topological map that match with a

new image, without comparing the new image with every image in that map. Comparing

an image with all images is called “full” localization. One of the main goals of this

experiment is thus determining the speed up of the CDS method as compared to full

localization.

Because the CDS method does not compare all images with the new image it could be

that some actually matching images are not found. This results in a failure to localize the

robot. Thus, a second goal is determining the accuracy loss of localization when using

the more efficient method. This accuracy depends on the distribution of the CDS nodes in

the graph. A good representative set of images would consist of relatively more images

from parts of the map that are more difficult to match.
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As we have seen in Section 5.1 and Chapter 2, other methods exist to pick a set of key

images. We also compare the CDS method with some of these approaches.

5.6.2 Evaluation measures

For evaluation purposes, we need to measure the speed-up of the proposed localization

method with respect to the exhaustive localization scheme, as well as the accuracy of

localization.

The computation time spent by any view-based topological localization scheme is

highly dependent on the used image comparison measure. However, in this chapter

we treat the algorithm to compute this comparison measure as a black box and assume

that every image comparison costs a fixed amount of time. The speed-up of an efficient

method with respect to comparing all images in the map is defined by the ratio of number

of performed images comparisons:

speed-up
loc

=

(
nmap

#comparisons
− 1

)
× 100%, (5.2)

where nmap is the number of images in the map.

For the coarse localization task, it is necessary to find at least one image in the map

that matches a new image. This can either fail or succeed. The percentage of success for

a number of coarse localization runs is defined as the “coarse localization accuracy”:

coarse localization accuracy =
#tests in which a match was found

#tests
× 100% (5.3)

For fine-grained localization, the accuracy is measured by the average number of found

image matches as compared to the total number of matches found by the full localization:

fine localization accuracy =
#found matches

#matches from full localization
× 100% (5.4)

5.6.3 Data

Experiments are carried out on the challenging data sets acquired in the real home envi-

ronments described in Appendix A. To evaluate localization, we need to obtain topolog-

ical view-based maps and new images taken in the same environment. This is achieved

using a leave-one-out approach. From an image set, one image is taken for localization

and the remaining images are used to build a topological map. Localization on this map is

then performed using the left out image. This scheme is then repeated for all the images

in the data set.

As we know there are various approaches to building a topological view-based map.

In this experiment, we simply compare all the images of a set with each other and create

a link for matching images. In the next section, we will explore the more efficient map

building method based on the CDS.

For the map building process and the localization method, we need to define an im-

age comparison measure. The CDS data association scheme can be combined with any
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5.6 Experiment: view-based localization using real data

image comparison technique. In the experiments in this chapter, we use a straightfor-

ward method based on corresponding local image features and imposing the epipolar

constraint as described in Section 2.2. We now repeat this description briefly.

First, a set of point correspondences is found similar to experiments described in Sec-

tion 3.7. The omnidirectional images are mapped to panoramic images (Bunschoten,

2003), from which feature points are found using the Scale Invariant Feature Transform

(SIFT) (Lowe, 2004). Features are described by the standard SIFT descriptor of 128 di-

mensions. Point correspondences between two images are determined by applying the

standard matching scheme as described in (Lowe, 2004).

Second, the relative robot pose is computed from these correspondences, using a state

of art method, explained in Section 3.5. Two images match if the number of point corre-

spondences that fit this pose, divided by the lowest number of features found in the two

images, is larger than a certain threshold. Pilot studies in an office environment with a

threshold of 0.1 resulted in a lot of good matches and no false matches.

The resulting topological maps are visualized in Figure 5.7 as connectivity graphs,

linking the matching images and using hand corrected odometry and GPS information

for the position of the image-nodes. Note, however, that the odometry information is not

used by the proposed method. As can be seen, for all datasets, a lot of images matched.

Figure 5.8 visualizes the resulting graphs of the Almere 4 set as a connectivity matrix,

which shows more clearly the loop closing image matches by the off-diagonal non-zero

values.

We highlight some of the characteristic parts of the home environments as depicted

in Figure A.2 and discussed in Appendix A. In the connectivity graphs (Figure 5.7),

the robot positions of the example images are visualized with a “D”, for images that are

difficult to match, and an “E”, for images that are easy to match.

5.6.4 Results: distribution of CDS nodes

The CDS algorithm is applied to the three datasets using the leave-one-out method. The

resources used by the algorithm are negligibly small compared to the time needed for

actually comparing images. For all the datasets, the computation time was always smaller

than 10 ms.

In Table 5.1 the number of CDS nodes is given averaged over the different runs. For

typical runs, we show in Figure 5.7 the distribution of the key nodes in the maps. One

can see that relatively more key images were picked in the neighborhood of the difficult

images close to images labeled with a “D”, than parts of the environment where good

images were acquired close to images labeled with an “E”.

5.6.5 Results: comparison with exhaustive localization

In Table 5.1, the average speed-up and accuracy for both the coarse and fine localization

are shown. For all datasets, the accuracy is not 100%. This means that some of the

images from the dataset did not match any of the CDS nodes based on the remaining

images. For the Spaan 1 this was the case for 12 images. In Figure 5.9, the position of

these images in the map is shown. In general, they were taken at the geometrical border
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E
D

(a) Almere 4

D

E

(b) Spaan 1

E

D

(c) Biron 1

Figure 5.7: The topological view-based maps visualized as connectivity graphs. The

positions of the nodes were determined using the ground truth data. Each

printed line represents a link between the nodes. The nodes themselves are

actually not shown to prevent the figures from getting cluttered. Circles de-

note the nodes that are in the final CDS. The nodes indicated by a “D” corre-

spond to example images that are difficult to match, plotted in the left column

of Figure A.2. Nodes indicated by an “E” are easy to match and plotted in

the right column.
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Figure 5.8: The topological view-based maps visualized as connectivity matrix of the

Almere 4 set. Image pairs with a higher similarity values are represented with

darker pixels. The entries on the main diagonals are the result of matching

sequential images, while the off-diagonal entries reflect instances of loop-

closing.The “D” and “E” again indicate the difficult and easy images shown

in Figure A.2.

Table 5.1: Speed-up and accuracy of the CDS-based localization methods for the real

home datasets.

Almere 4 Spaan 1 Biron 1

# images 2071 1436 1674

# cds-nodes 88.0 65.0 161.0

coarse localization
% speed-up 2251.7 2109.1 939.1

% accuracy 99.7 99.2 95.0

fine localization

% speed-up 1059.1 940.4 637.4

% accuracy 95.2 92.6 81.2
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Figure 5.9: The location of images that could not be used for localization in the topolog-

ical map of the Spaan 1 data set.

of the map or at places where the robot took a turn resulting in severe motion blur (see

Figure 5.10).

5.6.6 Results: comparison with other sampling methods

We compared the proposed method with other methods to pick key images. This was

done only for the Spaan 1 dataset. To make the comparison as fair as possible, we set the

sampling density for each method such that the average number of key images was about

65. This is similar to the number of CDS images (see Table 5.1). Thus the speed-up

of coarse localization is more or less equal among the methods. The following methods

were used:

Random picks 65 images randomly from the image set.

Position uses the odometry measurements to sample over displacements of the robot.

Time samples images over time.

In Table 5.2, the results are shown for both coarse and fine localization using the

different methods for the Spaan 1 set.
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Figure 5.10: Example image from the Spaan data set that has severe motion blur. This is

one of the 12 images that was not localized by the CDS-based localization

method.

Table 5.2: Comparison of the speed-up and accuracy of localization combined with dif-

ferent sampling methods applied to the Spaan 1 dataset.

Random Position Time CDS

coarse localization
% speed-up 2107.7 2041.8 2107.7 2109.1

% accuracy 83.7 90.8 96.4 99.2

fine localization

% speed-up 1150.3 1011.8 998.1 940.4

% accuracy 72.5 82.7 87.0 92.6

5.7 Experiment: mapping using real data

In addition, to localization the CDS algorithm was used to define a new view-based

mapping method. This is summarized in Algorithm 4. This method is applied to the

real home datasets. The resulting maps are compared with both maps resulting from

exhaustive comparing images and maps based on other sampling.

5.7.1 Aim

The aim of the proposed mapping method is to reduce the computation time spent on

mapping, while still finding approximately the same map as found when exhaustively

comparing images. However, we have seen in the localization experiment that fine local-

ization does not find 100% of all the matching images in the map. The proposed mapping

method is based on the same CDS algorithm. Thus, for each image that is added to the

map, the mapping method will miss some of the matches.

In general, the number of nodes the CDS will increase, while the robot is mapping.

As a direct result the number of image comparisons will also increase. If, however,

images are added that look similar to images that are already mapped, the size of the

CDS should stay more or less constant. We test this with an additional dataset, where the

robot traverses the same route through the environment twice.

In this experiment, we evaluate the computational speed-up of the proposed mapping

method and compare the resulting map to a map that results from comparing all images

(as used in the localization experiment).
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Figure 5.11: Ground floor maps of the Robot Lab environment. The trajectory of the

robot is indicated by the black line. The position of the furniture and walls

is approximate.

The incremental mapping scheme can also be combined with other sampling tech-

niques which were described in the localization experiment. We compare the resulting

maps using these different techniques with the one resulting from the CDS-based ap-

proach.

5.7.2 Evaluation measures

Again, the methods are evaluated base on the speed-up and the accuracy as compared

to an exhaustive matching scheme. The accuracy is defined as in Section 5.6.2 and the

speed-up is defined as:

speed-up
map

=

( 1
2nmap(nmap − 1)

#comparisons
− 1

)
× 100%, (5.5)

with nmap again the number of images in the map.

5.7.3 Data

The mapping methods are applied to the real home datasets using the same image sim-

ilarity measure as used in the localization experiment, see Section 5.6.3. In addition, a

dataset is used in which the robot traversed the same route twice, which we name the

“Robot Lab” set. This dataset was acquired in the university building using the same

robot and vision system as used for the Almere 4 and Spaan 1 datasets. See Figure 5.11
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Figure 5.12: The topological view-based map of the Robot Lab, visualized in a similar

manner as the real home maps in Figure 5.7.

(a) (b)

Figure 5.13: Two example images from the Robot Lab set.
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Table 5.3: Speed-up and accuracy of the CDS-based mapping method for the real home

datasets and the Robot Lab dataset.

Almere 4 Spaan 1 Biron 1 Robot lab

mapping
% speed-up 997.5 948.2 720.6 759.8

% accuracy 96.2 96.9 89.7 98.4

for a drawing of the environment and the path that the robot took. As can be seen, the

robot drove the same loop in the environment twice. In Figure 5.12, the graph resulting

from exhaustive image comparison is shown. In Figure 5.13, two typical images from

the data set are layed out.

5.7.4 Results: comparison with exhaustive mapping

The proposed incremental mapping method based on the CDS algorithm is applied to

the four datasets. The connectivity graphs and connectivity matrices of the resulting

view-based maps are visually indiscernible from the ones computed using the exhaustive

method. They are therefore omitted. In Table 5.3, the speed-up and accuracy of the

CDS-based method are given. As can be seen, for most datasets the CDS-based method

is about 10 times faster than the exhaustive method resulting in only 2 to 4% fewer links.

The Biron 1 set, however, proves more difficult. This is most probably due to the false

image matches, which misleadingly raise the number of links that exhaustive method

finds.

5.7.5 Results: comparison with other sampling methods

We also combined the incremental mapping scheme with the other sampling methods

that were used in the localization experiment. They were applied to the Spaan 1 dataset.

To make the comparison as fair as possible, we set the sampling density for each method

such that the number of images-pairs that is compared is more or equal to the number of

image-pairs compared by the CDS method. Thus, the CDS method will use less or equal

the amount of computation time. This resulted in somewhat different sampling densities

than used in the localization experiment:

Random During each iteration, a new set is chosen with an average number of images

equal to .063 times the number of images in the map.

Position After each 43 cm, an image is added to the set of key images.

Time After each 3.8 seconds, a mapped image is added to the set of key images.

In Table 5.4, the accuracy of all methods is shown. Note that experiment was per-

formed such that the speed-up is more or less the equal, and therefore omitted from the

table. On top of this, the number of key images that was computed when adding the last

image is given.
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Table 5.4: Comparison of the accuracy of mapping combined with different sampling

methods applied to the Spaan 1 dataset.

method final # key images % accuracy

Random 92 71.0

Position 82 82.9

Time 77 85.0

CDS 65 96.9
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Figure 5.14: The number of nodes in the CDS, while the map of the Robot Lab is grow-

ing. The vertical dashed line indicates the beginning of the second traversal

of the same loop.

5.7.6 Results: revisiting places

During mapping the environment, more and more images are added to the map and thus

the size of the set of key images grows. This is depicted in Figure 5.14. At image 1020,

the robot had finished its first loop in the environment with a CDS size of 39 images.

During the second traversal of the loop, new images were matched with images taken in

the previous loop. This way the robot created links between these images as shown in

Figure 5.12. Because of these links only a few extra nodes were added to the CDS during

this second loop resulting in a total of 44 nodes in the final CDS (which are indicated in

Figure 5.12).

Note that the set of 44 key images of the final map are not composed of the 39 key

images of the first loop and 5 extra images of the second loop. The best set of key

images is determined for each new image that is added to the map. Images of the second

loop might better represent images taken of a particular part of the environment, making
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Figure 5.15: The number of performed image comparisons, while building the map. For

exhaustive mapping the number of comparisons grows linearly with the size

of the map. For the CDS-based mapping, it grows much slower. The fluc-

tuations in the graph of the CDS are mostly caused by the variable speed of

the robot. When the robot is moving slowly, then relatively many images

will match.

images of the first loop redundant. In the Robot Lab set the final CDS is composed of 11
images of the first loop and 33 of the second loop.

Figure 5.14 also shows that in some occasions the number of nodes in the CDS de-

creases. This happens when a new image is added which matches already mapped images

that did not match each other. This indicates that new images can represent an existing

set of images better than the previous key images taken from the set.

Figure 5.15 shows the number of image comparisons performed while the robot is

mapping the Robot Lab set. The other datasets resulted in similar plots. As can be seen,

the number of comparisons for the exhaustive data association scheme increases linearly

with the number of images in the map. The number of comparisons performed by the

CDS method barely increases.

5.8 Conclusion

In this chapter we proposed efficient localization and mapping methods for view-based

topological maps. Our approach is based on the fact that we consider only a selection of

the previously acquired images for matching new images. The selected set of represen-

tative images covers the complete set of previously acquired images. We can efficiently

detect loops in the trajectory of the robot. We have shown that the problem of find-

ing the minimal number of key images is equivalent to finding the smallest Connected

Dominating Set (CDS).

The experimental results show that our method leads to a more efficient distribution
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of key images. From areas in the environment that are harder to match, for example,

because of bad lighting conditions, more images are picked. In this way, loop closure is

much more robust, even if it occurs in such an area.

The CDS method is built in a hierarchical data association scheme that incrementally

builds a map without using any prior knowledge about the environment. The set of

representative images is dynamic. After each newly acquired image, a CDS is determined

that best represents the set of images at that moment.

The method is applied to the challenging datasets acquired in home environments. In

all datasets, our method finds approximately the same map as is formed in the “full” case

that compares all image pairs. However, only 13% of the computation time is used.

Our method outperforms other known sampling techniques, which find larger sets of

key images, but fewer matching image pairs, in the same amount of computation time.

Our method finds 97% of the matches that were found with a “full” method while position

and time-based methods found less than 85%.

Although the CDS method was used stand alone during the experiments, it could just

as well be merged with other sampling techniques. For example, it could use the navi-

gation prior of a geometric mapping method as explained in Section 2.4.3. Furthermore,

the efficiency of the CDS method could be even further improved by additionally using

a more efficient image similarity method like the recently proposed hierarchical meth-

ods (Sivic and Zisserman, 2003) or a bag-of-words (Cummins and Newman, 2008) as

described in Section 2.2

In the experiments, we used image sets in the order of a few 1000 images. For such

dataset sizes, exhaustive data association used for evaluation is still possible, though time

consuming. Using the CDS method datasets can scale up by a factor of 10. In Esteban

et al. (2008) we used a SLAM system to build a map with more than 10,000 images,

implicitly using the CDS method for data association.

If even larger maps need to be constructed, then it would perhaps be beneficial to re-

duce the number of images in the map. The question then is which images are redundant

and can be removed, without changing the map too much. An answer in line with the

reasoning in this chapter, is that we should define redundancy as images that look very

similar to other images in the map.
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View-based mapping is a straightforward and relatively easy approach to building a map

of an environment. Nevertheless, to build a view-based map of an inhabited home en-

vironment in real time, requires both low computational cost and high robustness. In

the preceding chapters we have investigated methods that try to meet these requirements.

This resulted in new solutions for the problems faced in view-based mapping. We evalu-

ated these by comparing them with existing methods. In this final chapter we summarize

our main contributions and experimental results. We are then able to answer the research

questions which were formulated in Chapter 1. We conclude this chapter with possible

directions for future work.

6.1 Contributions

We began, in Chapter 2, by giving an overview of existing work in the field of view-

based mapping. We identified that image similarity measures for view-based mapping

are commonly based on the ability to estimate a relative camera pose. Sometimes this is

done explicitly by combining photogrammetric techniques with the RANSAC algorithm.

However, in a lot of cases it is performed implicitly, and perhaps unintentionally, using

less well-founded heuristics. In addition, it is often assumed that the motion of the camera

is restricted, because the robot is driving over a planar surface. We showed that this

restriction is usually implemented in a rather ad hoc manner.

In Chapter 3, we investigated how the planar motion assumption can be used to esti-

mate the relative pose given two images. We proposed two new methods that perform

such an estimation.

First, we derived the closed form Planar Two-point algorithm that can compute the

relative pose using only two point correspondences. In previous studies on this topic,

it was assumed that the relative planar pose can always be determined from two point

correspondences. We discovered that this is not true and show that, actually, in 50% of

the cases there are two possible poses. In these cases, the Planar Two-point algorithm

returns them both. The Planar Two-point algorithm has to be combined with RANSAC

to effectively cope with noisy correspondences and mismatches. However, experiments

showed that, in practice, the combination of RANSAC with the existing Planar Three-

point algorithm is more accurate.

Second, we developed an alternative approach to cope with noisy correspondences and

mismatches, based on lookup tables (LUT) and a discretization of the solution space. It

was shown that this approach was up to 100 times more efficient while being up to 20%

more accurate than the RANSAC-based approaches. The accuracy improvement was

most apparent in environments with difficult lighting conditions.

What sets our LUT-based method apart from other methods, is that it directly learns a
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mapping from local image features seen in the environment to the space of possible planar

relative robot poses. This leads to the advantage that it does not require an explicit model

of the used camera system, the pose of the camera on the robot, or specific characteristics

of the environment, including moving objects and persons. As a result the method is

easy to implement and use in different environments. Because the learned model is

represented as a 3D lookup table (LUT), the estimation process is reduced to simple

lookups, resulting in low computation times.

Furthermore, we investigated if the proposed methods, based on planar motion, are

more accurate and efficient than existing unrestricted pose estimation techniques. Eval-

uation on the home environment datasets showed that this was indeed the case. The

combination of RANSAC with an unrestricted pose estimation method had a median ro-

tation and heading error of more than .9 radians for each of the datasets. The methods

based on planar motion had median error around .4 radians for rotation and around .6

radians for heading. In addition, the used computation time for the proposed methods is

3 to a 100 times less than the unrestricted pose estimation.

In Chapter 4, we investigated how the uncertainty of the estimated relative pose can

be measured. The LUT-based method outputs a full discretized density estimate of the

relative pose instead of just the maximum likelihood solution as estimated by RANSAC-

based methods. By applying Bayes’ rule it is possible to estimate the uncertainty of the

estimated relative pose. We used this uncertainty as a new image similarity measure for

the view-based mapping application.

The question was if this uncertainty measure provides an efficient and robust image

similarity measure for the view-based mapping application. Applying this measure on

the home environment datasets resulted in a view-based map with more links than other

popular similarity measures. Depending on the size of the LUT, 3.5% to 14% more

correct links were found than with a RANSAC-based measure. Moreover, the proposed

method is up to 10 times more efficient.

Regardless of the efficiency of the image similarity measure, the computational com-

plexity of view-based mapping increases linearly with the amount of images in the map.

In Chapter 5, we investigated how we could limit the number of image comparisons nec-

essary for view-based mapping. We proposed a hierarchical data association scheme

which exploits the topological structure of the map, limiting the number of necessary

image comparisons. The main contribution is the use of the graph theoretic Connected

Dominating Set (CDS) to pick a minimal subset of images to represent the complete set

of previously taken images. This is used to roughly but efficiently determine the location

in the view-based map. For the real home environments this mapping method proved to

be more than 7 times faster than exhaustively comparing with the complete set of images.

The last research question was what effect comparing with only a subset of images has

on the resulting map. For the real home environments, the method finds 97% of the links

found by the exhaustive scheme, resulting in approximately the same view-based map.

Overall, the proposed methods achieve a level of robustness and efficiency that allow

for a mobile robot to map a real inhabited home environment in real time. Appendix B

shows how a robot can use such a map to perform goal directed navigation, while humans

walk in close proximity. Here the CDS technique is used for view-based localization. In

Appendix C, a more complete robot system is shown which is guided by a human while

exploring a home environment. Using the efficient techniques described in this thesis, the

110



6.2 Discussion and future work

robot can build a map of this environment in real time, allowing it to resolve ambiguities

by interacting with the guide. These results make it clear that the achieved efficiency

and robustness of the proposed methods are not merely quantitative improvements, but

essential to make new robot applications possible.

6.2 Discussion and future work

The methods proposed in thesis, could contribute in two different ways to major break-

throughs in the field of robotic mapping.

The first one is rather pragmatic. We have shown in different experiments that our

newly developed methods are quantitatively more accurate and more efficient than es-

tablished view-based approaches. Moreover, most of those approaches have existed for

quite some time and have been fine-tuned for various scenarios and applications. For the

methods proposed in this thesis, this is not the case. We think that with little effort, the

results as reported in this thesis can be further improved upon.

At the end of each chapter we have already mentioned several possible improvements.

We think that the largest gain in efficiency can be achieved by more carefully dealing

with the memory management of the LUT-based algorithm. It should be implemented in

such a way, that the minimal amount of data has to be copied from the memory to the

cpu and vice versa.

This gain in efficiency and robustness makes it possible to create bigger view-based

maps and map environments under more challenging circumstances than existing sys-

tems.

The second opportunity has a more qualitative nature. The developed image similarity

measure and the relative planar pose estimation method from which it was derived, both

have a strong probabilistic foundation. The ability to efficiently estimate a full density

estimate over all possible relative poses is unique. Because of this property it is relatively

straightforward to combine it with existing probabilistic methods.

A perhaps obvious example, which was already mentioned in Section 3.8, is the inte-

gration of the relative pose estimator with existing geometric mapping systems. These

systems often have a strong probabilistic nature and require as input not only estimates

of the relative poses, but also estimates of the uncertainties of those poses. These un-

certainties are usually modeled as covariance matrices, which are kept fixed for each

pose, or are estimated by using first order error propagation techniques. Using our pose

estimation method a much more realistic uncertainty can be obtained as input for the ge-

ometric mapping system. If needed a covariance can be estimated by fitting a Gaussian

on the discretized density estimate in the neighborhood of the maximum likelihood so-

lution. This would improve both the accuracy and the consistency of the geometric map.

In combination with the image similarity measure it would lead to the ability to build

geometric view-based maps of real home environments.

Another example is the straightforward manner of incorporating prior knowledge of

the relative pose into the pose estimation method and the image similarity measure using

prior probability distributions. A more challenging task would be to integrate the pro-

posed methods with popular probabilistic bag of words-based image similarity measures,
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such as FABMAP. This would be a big improvement over the ad hoc geometric check

that is now being applied.

The view-based data association scheme, based on the CDS algorithm, did not benefit

from the probabilistic nature of the image similarity value. It is a purely graph-based

algorithm, and picks key frames only on the basis of image matches, which were obtained

by thresholding the similarity values. It would be interesting to try to define a similar

data association scheme that uses the similarity values themselves. This would give the

ability to make a trade off between the number of performed image comparisons and the

probability of missing a certain link between two images.
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A Real home datasets

In order to evaluate all the methods described in this thesis we acquired datasets in three

different real home environments1. Here, we give a brief description of these datasets.

In (Zivkovic et al., 2008) the datasets are presented in more detail.

Two different wheeled robots were used to acquire the datasets, namely a relatively

small Nomad Scout, and a bigger PeopleBot called “Biron” from the Faculty of Technol-

ogy of the Bielefeld University (Haasch et al., 2004), see Figure A.1. Both robots were

driven through the homes by tele-operation.

To acquire images the robots were equipped with an omnidirectional vision system

consisting of a conventional Firewire camera pointing upwards to a convex hyperbolic

mirror from Accowle. For both the camera and the convex mirror an accurate model was

available, making it possible to relate image pixels to image-rays. On the Nomad the

camera was placed at about 1 meter height, while on Biron this was about 2 meters.

In addition, a Sick active laser scanner was mounted on both robots. The laser scans

and the odometry of the robot were used to obtain ground truth robot poses by applying

a line-based SLAM algorithm described in (Folkesson et al., 2005).

All three homes were relatively small apartments with a single floor. Although mul-

tiple datasets were shot in each home, in most of the thesis we use only a single dataset

from each of them. In Figure A.3 the trajectories of the robot are shown for these datasets

and Figure A.2 shows some typical omnidirectional images from the acquired image sets.

In the following we describe the distinct characteristics of each home and the dataset that

was acquired.

Almere

This house was actually not inhabited but used as a demonstration house by the

company “Unet”. The dataset we use, named “Almere 4”, was captured during

day time with the blinds open. This caused some images to be very bright, see

Figure A.2(b), while others not being in direct view of a window to be quite dark,

see Figure A.2(a). As can be seen in the images the dataset was taken while people

walked in close proximity to the robot. For this dataset the Nomad Scout was used

which acquired 2071 images taken at 7 Hz.

Spaan

This small student apartment was visited during evening hours and was therefore

relatively dark. This resulted in somewhat dark images and, more importantly,

motion blur during sharp turns, because of the required higher camera exposure

times, see Figures A.2(c)-(d). As can be seen the house itself was relatively feature

rich. We use set “Spaan 1” for the experiments in this thesis, which consists of

1The datasets, including images, odometry, sonar and laser range data (all time-stamped), are available from

http://www2.science.uva.nl/sites/cogniron/

113



A Real home datasets

(a) Nomad Scout (b) The PeopleBot

“Biron”

Figure A.1: The two robots that were used for recording the datasets.

1436 images taken at 5 Hz by the Nomad Scout. In this set there were no people

walking in the home.

Biron

This house was situated in Bielefeld and the datasets were acquired by the Biron

robot. The house was only partly inhabited, and some rooms did not contain any

furniture. Like the Spaan house, this house was also visited during evening hours.

It is the biggest house with 8 different rooms and some narrow corridors, see

Figure A.2(e)-(f). While taking this dataset the Biron robot was heavily loaded,

making its movement jerky causing in motion blur in the images. As a result the

datasets taken in this house were more challenging than the others. We use set

“Biron 1” for the experiments which consisted of 1734 images taken at 2.5 Hz and

did not contain people walking in the home, except the person tele-operating the

robot.
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(a) Almere 4, dark (b) Almere 4, bright

(c) Spaan 1, motion blur (d) Spaan 1, feature rich

(e) Biron 1, small hallway (f) Biron 1, big living room

Figure A.2: Example images from each dataset taken by the omnidirectional vision sys-

tem. From each indoor dataset there are two images. On the left there are im-

ages with few distinctive image features and on the right images with many

image features. In Figure A.3 the positions of the robot are indicated while

taking these particular images.

115



A Real home datasets

E D

(a) Almere 4

E
D

(b) Spaan 1

E

D

(c) Biron 1

Figure A.3: Ground floor maps of the indoor environments with the approximate posi-

tions of the furniture. The trajectory of the robot, as estimated by the laser-

based SLAM method, is indicated by the black line. The “E” and the “D”

indicate the positions from which the feature rich and the feature poor images

were taken respectively, shown in Figure A.2.
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B Navigation using an

appearance-based topological

map

In this thesis we have shown how to build a topological view-based map. Although this

map does not contain any positional information accept for pairwise relative poses, it

can be used for path planning and goal-directed navigation. In this appendix we show

that these tasks can be performed robustly and efficiently in a relatively small office

environment. The used methods do not involve the LUT-based relative pose estimation

or the Connected Dominating Set based localization procedure as described in this thesis.

It is however straightforward to incorporate these techniques, which would allow for path

planning and goal-directed navigation in more challenging environment, such as homes.

This appendix was presented earlier as a paper at the International Conference on

Robotics and Automation in 2007 and was published in its proceedings (Booij et al.,

2007). It contains overlap with the rest of the thesis, most notably with Chapter 3. Some

inconsistensies with that chapter are explained in footnotes.

B.1 Introduction

Recent developments in the field of ‘personal’ robots, which interact with humans in a

natural way, bring new insights in the representations needed by the robot to fulfill its

task.

For example the internal model of the environment, used by the future home robot for

goal-directed navigation, must contain spatial concepts understandable for the human.

In an indoor environment typical classes such as ‘rooms’, ‘objects’ or ‘doors’ must be

detected.

The sensing system of the robot must be able to distinguish between different instances

of these classes. The traditional sensors on robots such as laser range finding — mainly

used for obtaining geometric information and navigation — have been used for semantic

labeling of places (Stachniss et al., 2005), but a more appealing solution is to use com-

puter vision. Abstract visual cues have been used in classifying rooms (Tapus and Sieg-

wart, 2006; Ulrich and Nourbakhsh, 2000) and recently representations based on visual

object recognition have been presented (Vasudevan et al., 2006) for spatial descriptions.

Apart from semantic labeling, visual information can also be used for map building.

In (Se et al., 2002) a 3D representation is built, where locations of distinctive features are

reconstructed. Recently we have presented an approach where the environment map is

not a 3D reconstruction but is represented as an “appearance graph”: a topological rep-

resentation where nodes represent omnidirectional images taken by the robot and edges
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are defined by similarities between these images (Zivkovic et al., 2005). We showed that

this representation can be used for path planning (Bakker et al., 2005) and for finding a

categorical representation (Zivkovic et al., 2006). In this paper we will show that this

representation can be used for navigation.

Strategies for mobile robot navigation with omnidirectional vision systems have been

reported earlier. (Mariottini et al., 2006) shows the epipolar constraint can be used for

moving from one pose to another in a simulator. Navigation over longer paths has been

reported by (Argyros et al., 2005), but this system is restricted to travel only along prere-

corded trajectories.

In this paper we present visual navigation using the appearance graph, making it pos-

sible to drive trajectories not driven in the training phase. In Section B.2 we will first

summarize our appearance based topological representation. Then we will explain our

navigation strategy, in which we use the epipolar constraint and the constraint of mov-

ing over a planar ground floor to obtain a robust heading estimation (Section B.3). In

Section B.4 we explain how to navigate over the graph representation. Experiments on

orientation estimation and navigation using real data are reported in Section B.5.

B.2 Appearance based topological mapping

In this section we describe the method used for constructing the appearance based map.

This has already been reported in (Zivkovic et al., 2005). The goal is to construct a

weighted graph G = (V, S) in which the nodes V denote images taken at certain posi-

tions in the environment and each link Sij in the graph denotes that image i and j look

similar and are thus likely to be taken from more or less the same position (Schaffalitzky

and Zisserman, 2002). The similarity measure we use is directly linked to the ability to

perform navigation between the two positions. If we can robustly reconstruct the local

geometry given the two images then we define a link Sij > 0 between the two nodes.

The robustness of the reconstruction is expressed in the value of Sij of the link.

We start with a set of images taken by the robot while it was driven around in the

environment. In order to get a large overlap in the images the robot is equipped with an

omnidirectional vision system consisting of a hyperbolic mirror and an ordinary camera

(see (Zivkovic and Booij, 2005) for details). From each of the resulting panoramic im-

ages a set of SIFT features is extracted (Lowe, 2004). Then for each pair of feature sets,

corresponding points are found by comparing their SIFT descriptors, see Figure B.1. The

epipolar geometry is determined using robust estimation techniques, which are also used

for robot navigation (more about this in Section B.3). One of the outputs of the estimation

method is the number of point correspondences that agree with the epipolar constraint.

However from these correspondences there is still a percentage of false feature matches.

The number of these false matches is in the order of the number of features found in the

two images. By dividing the number of constrained point correspondences by the lowest

number of features found in the two images we obtain a similarity measure between 0

and 1. If this value is larger than a certain threshold, which indicates the robustness of

the local geometry estimation, the images match and a link Sij is created between the

two nodes representing the images with its value set to the similarity.

In Figure B.5 an appearance based map is shown as constructed for the navigation
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Figure B.1: Matching two images. The red boxes indicate the SIFT features found in

the images. The lines connecting two of these features indicate that they

correspond. If the line is blue, this means the corresponding pair agrees with

the epipolar constraint. If it is green, it does not agree with the epipolar

constraint and is thus probably an outlier.

experiments. The map is purely topological, as there is no explicit distance or scale in-

formation present in the graph (note that the position of the nodes is based on odometry

information, however this is only used for visualizing the graph.) What is contained in

the map is information on the neighborhood relation of different parts of the environ-

ment. The graph representation is well suited for further processing. In (Zivkovic et al.,

2005) we explain how graph clustering techniques are used to find convex spaces in the

map, which correspond to rooms and corridors in the environment. Augmenting the

graph-clusters results in a semantically labeled map, which can be used for human robot

interaction (Spexard et al., 2006).

B.3 Heading estimation using the epipolar

geometry

Epipolar geometry estimation is thoroughly discussed in computer vision literature and

some standard implementations are readily available (Hartley and Zisserman, 2003; Torr

and Murray, 1997). However, because we use an omnidirectional vision system and a

robot to obtain the images, there are some special issues to take into account.

We assume that we extracted a set of N matching point pairs from the two panoramic

images. The image points are then projected on a sphere around the optical centers

with distance 1. Let us denote the 3D points in the current image as {x(1)
1 , ...,x

(N)
1 },

and the corresponding points in the target image as {x(1)
2 , ...,x

(N)
2 }. Omnidirectional

vision systems are by default calibrated in order to produce single viewpoint images. So
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we can use the essential matrix E, instead of the more general fundamental matrix for

uncalibrated images, to relate point correspondences in the following way:

(x
(i)
1 )T Ex

(i)
2 = 0 for all i. (B.1)

Using 8 point pairs we can linearly solve E with the 8-point algorithm (Hartley and

Zisserman, 2003). However the robot is driving over the planar ground floor. Hence, it

can be assumed that the positions of the images do not differ in height and the relative

rotation only occurs around the vertical axis. This prior knowledge can be incorporated

by restricting the essential matrix in the following form (Brooks et al., 1998; Kosecká

et al., 2005):1

E =




0 e(2) 0

e(4) 0 e(6)
0 e(8) 0



 (B.2)

The minimal number of point pairs for the linear estimation of this constrained essential

matrix is only2 4 and because the solution space is smaller the estimator is less effected

by noise.

The essential matrix bears the relative rotation R and translation ~t up to an unknown

scale between the positions of the two images as follows:

E = RS, (B.3)

where S is a skew-symmetric matrix composed of the elements of ~t. The essential matrix

can be decomposed into 4 different solutions of ~t and R. By imposing the constraint that

world points should lie in front of the image surface on which it is projected, we can

choose the correct solution (Horn, 1990). The world points that were projected behind

one of the image surfaces given the correct R and ~t were obviously produced by false

matching. For panoramic images the probability that a false match is in front of both

image surfaces is small, because omnidirectional vision systems look in every direction,

see Figure B.2. We use this knowledge in the robust estimation process described below.

Generally image points are not noise-free and part of the point pairs found by the

matching algorithm is the result of false matching. Therefore a simple least squares

method to fit an essential matrix to the data will fail miserably. A fast and robust esti-

mation method that can cope with a large percentage of these false matches is RANSAC

(random sample consensus), which we use to determine correct point pairs (Hartley and

Zisserman, 2003; Torr and Murray, 1997). RANSAC estimates a large number of essen-

tial matrices and chooses that E that agrees with the most point pairs. In each run it first

estimates E given 4 randomly chosen point correspondences using the planar version of

the 8-point algorithm. Then we check if the four correspondences all lie in front of both

image planes. If not, then we discard that estimate of E (this type of model checking was

first proposed in (Chum et al., 2004)). If the correspondences are consistent, we use E to

reproject all point correspondences of the image pair and count the number inliers. An

1Note, that this equation differs from Equation 3.38. This is not a fundamental difference but is caused by a

difference in the coordinate system. More specifically, the second and third coordinates are swapped.
2As discovered later, the minimal number of required point correspondences is actually 3. This is explained

in Section 3.4.3.
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x2

x1

X

Figure B.2: A 2D visualization of a corresponding point in two panoramic images. The

circles denote the panoramic images and the black dot is the worldpoint X .

The solid lines are the oriented rays going through the optical center and the

worldpoint. The filled parts of the circles denote those places in the images

where the oriented ray of the other camera can be projected, i.e. the epipolar

line. As can be seen in only a small part, less than 50% of the image, a

corresponding point can be found.

inlier in our case, is a correspondence that has a low reprojection error and lies in front

of both cameras.

After choosing the run with the highest number of inliers, a final E is computed by

taking into account all its inliers. From this E, the R and ~t (up to a scale factor) are

determined between the image locations (Horn, 1990). In the remainder of the paper we

assume that, if R and ~t can be determined robustly, the robot can indeed move from one

location to another. This need not be true, for example if there are obstacles with very

few localized features, or if the features are located in a restricted region of the images.

In our experimental setup we therefore had a local obstacle algorithm operational using

sonar. In the runs we present in this paper we did not need the obstacle avoidance.

The heading φ the robot has to drive when navigating from the current image to the

target image can be calculated using

φ = atan2(ty, tx). (B.4)

B.4 Navigation over the topological map

In this section we describe the framework to navigate to a goal location in the environ-

ment mapped by the appearance based graph given the heading estimation explained in

section B.3. The general aim is that the robot should be able to navigate to any room in a

building by giving it a node in the graph. In our specific case we desire that the robot is

able to match the last observation with that of the goal node.

A challenge is that there is no positional information stored in the representation. Thus,

two images whose nodes are neighbors in the graph, could have been shot at any distance

from each other. Techniques exist to estimate the distance from two images. However

these techniques would require us to make an assumption on the position of landmarks

in the world, making the system less flexible. Another solution is to find corresponding

features in three or more images, which is quite common in the field of visual servoing
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(see for example (Mezouar et al., 2004)). However, in dynamic environments it will be

more difficult to find stable correspondences in three images than in just two.

We take it that the goal location is given by a node in the graph. First Dijkstra’s shortest

path algorithm (Dijkstra, 1959) is used to compute the distance Di from every node i in

the graph to this goal node. This algorithm requires the links of the graph to be labeled

with a distance measure while we have a similarity measure. We choose to define the

distance d as dij = 1
Sij

. The distances of the nodes to goal node are used during driving

as a heuristic to drive in the direction of the goal node.

Note that the algorithm in our case gives the shortest path in the appearance space,

which is not necessarily the shortest path in the metric space. Because of our distance

measure, a shortest path will favor a selection of image sequences which have many

features in common. This may imply that the robot will avoid path elements where the

local features change rapidly (close to narrow throughways) and will prefer to navigate

in the center of large open spaces. We plan to design experiments to test this in more

detail: in this paper we focus on the robustness with respect to occlusions.

The navigation procedure directs the robot to one node at a time that can be seen as

a subgoal node on a path to the goal node. This path of nodes could have been planned

in advance. However this would result in a very inflexible trajectory which would be

difficult to traverse in a dynamic environment. In the following we explain how the

subgoal nodes are determined dynamically while driving.

At the start of the trajectory the robot localizes itself in the appearance based graph

by taking a new observation and comparing it with all the images in the graph following

the same matching procedure as used for constructing the graph (see Section B.2). The

node of the graph with the highest similarity is chosen as the current subgoal node c
of the robot. This procedure is linear in the number of nodes and could thus be time

consuming.

If a subgoal node is determined the robot tries to pick a new subgoal by comparing

the newest observation with all the neighbors of node c that have a smaller distance Dc

to the goal node. If one of these images matches, it becomes the new current subgoal c.

This procedure is repeated for the neighbors of the new c, until the node is found that is

closest to the goal node and still robustly matches the new observation.

When a subgoal is determined, the heading is estimated in order to drive in its direc-

tion. This heading will not be perfectly directed toward the subgoal, partly because of

sensor-noise, but also because the environment could have changed after the appearance

based map was constructed. Therefore a recency weighted averaging filter is used which

to takes into account previous estimates of φ.

This smoothed heading is now used to move the robot. It then takes a new observation

while driving and repeats the whole procedure. This goes on until the subgoal is equal to

the global goal and the robot is stopped, completing the navigation.

We also need some recovery method in case the robot gets lost. It could happen that

the robot is repeatedly unable to estimate the heading with the current subgoal, because

it finds fewer than3 4 corresponding image points. This can be due to changing envi-

ronmental conditions, but can also be caused by bad heading estimates for the previous

observations. If the robot can not find a heading for 10 observations in a row it will try

3This should be 3 correspondences, see Footnote 2.
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to relocalize itself in the map and start with the new node as subgoal.

B.5 Experiments

For the experiments a Nomad Super Scout II is used which is equipped with an omnidi-

rectional vision system consisting of a hyperbolic mirror and an ordinary camera. The

navigation procedures are tested in an office environment.

We first test if the heading estimation works properly by comparing it with ground

truth positioning data of the robot. Then a large appearance map is constructed by driv-

ing the robot manually through the environment. This map is used for the navigation

experiments, in which we compare the length of the traversed path to that of a manually

driven path. Also we test the robustness against noise, by obstructing part of the view of

the robot while it is driving.

B.5.1 Heading estimation

First the low level heading estimation is tested by comparing it with the ground truth

positions and orientations of the robot. A small data set is taken by the robot on a 3 by

3 grid of approximately 2 square meters in size. On each point of the grid 4 images are

taken with the robot facing in 4 different directions, giving a total of 36 images.

For each pair of images the heading is computed given the method explained in sec-

tions B.2 and B.3. The headings between images taken at the same location are meaning-

less and thus ignored. The estimated heading is compared with the ground truth heading

calculated on the basis of odometry information, which is quite accurate at such small

distances. In Figure B.3 a histogram is plotted of the difference between estimated and

the ground truth heading. The standard deviation of the error is 0.31 radians. Although

the images were less than 3 meters apart, the results indicate what we can expect of the

heading estimation during navigation.

B.5.2 Appearance based mapping

The robot was driven manually through the environment, consisting of a U-shaped hall-

way and 3 rooms. While the robot was driving images were taken at a rate of 1 image per

second. In Figure B.4 the approximate positions of the images are shown. The position

of these images were derived using the odometry information of the robot. Errors in the

odometry were corrected somewhat to make the visualization more clear. This is also

used for the figure showing the graph. We must stress that the odometry errors did not

influence the outcome of the navigation, as we do not use the odometry readings in our

methods.

An appearance based topological map is constructed using the images as described in

section B.2, see Figure B.5 for the result. The value that is used to threshold the similarity

value is set to 0.05, which seemed to work well for a different dataset taken in another

environment. This basically means that 5 out of the 100 image features should have a

corresponding feature in the other image, which is constrained by the epipolar geometry.
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Figure B.3: Histogram of the differences between the estimated and the ground truth

heading of all pairs of images.

Figure B.4: The path the robot followed while it was manually driven through the en-

vironment. The robot started at the lower left of the figure and drove to-

wards the room on the lower right. The circles denote the positions at which

panoramic images were taken.
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B.5 Experiments

Figure B.5: The appearance based graph. The circles again denote the approximate im-

age positions and the lines connecting them indicate matching images. The

gray-value of the lines correspond with the similarity value of the match.

As can be seen in the figure no links were created between images that were taken from

very different locations. The matching method thus shows to be robust against similar

looking but different office rooms.

B.5.3 Robot navigation

The robot is put in a position in the mapped environment and a goal node is picked from

the graph in another part of the environment. This is repeated two times creating two

start and end positions for which the robot should find a path and navigate over it. We let

the robot navigate 3 times over both paths.

All 6 runs were completed successfully, without having to use the recovery method.

In two occasions a heading to the subgoal could not be calculated. However this did not

cause the robot to loose track of his path. The robot drove smoothly to the goal node

stopping in its vicinity. In Figure B.6 two of the traversed paths are shown. The other

4 paths were very similar to these ones. As can be seen the robot did not drive a the

trajectory that was driven while taking the dataset. Rather, it used a path of nodes that

was much shorter.

Quantitatively evaluating the performance of robot navigation is not a straightforward

task. It is common to report the metric error of the final robot position given an exact

goal position (Argyros et al., 2005; Mariottini et al., 2006). However this error depends

solely on the last stages of the navigation task, which is only interesting if the start and

goal position lie close together. It seems more important to measure if the robot “takes

wrong turns” while driving through the environment, from which it has to back up. This

would have a great impact on the length of the path the robot traversed. In table B.1

the average path length and the standard deviation is given. For comparison the robot

125



B Navigation using an appearance-based topological map

Figure B.6: Two of the traversed paths depicted by the thick blue and red line visualized

on top of the graph. As can be seen the paths were quite smooth. The fact

that the upper left part of the blue path does not lie on the graph is probably

a result of bad odometry readings.

Table B.1: Average driven path lengths in meters ± the standard deviation for au-

tonomous and manual navigation

path 1 path 2

Auto 13.8± .4 12.4± .8
Manual 14.2± .3 12.1± .3

was also driven manually from the start positions to the positions where the robot had

stopped, by an experienced user. This is also repeated 3 times per path. The lengths of

the manually driven paths are comparable with those of the autonomously driven paths,

indicating that the robot did follow a correct path to the goal position (see table B.1).

B.5.4 Navigation with visual occlusions

To put more strain on the visual navigation method we now test the ability to drive while

part of the view is blocked by people walking next to and in front of the robot. See

Figure B.7 for an indication of the view the robot has while 4 persons are standing next

to it. The persons are walking very near the robot at approximately 20 cm distance. The

path that had to be traversed is the same as one of the paths in the previous section. Tests

are conducted with respectively 1, 2, 3 and 4 persons.

The robot still managed to reach the goal location in all 4 tests. Nonetheless it was

clear that for every person that was added, the navigation was a bit more difficult. In

table B.2 it is shown that the path length increases if a larger part of the view is blocked.
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Table B.2: Path lengths in meters with people blocking the view

#Persons path lengths

0 14.2

1 15.2

2 18.0

3 19.0

4 23.6

Figure B.7: Four persons blocking the view of the robot.

This is not only caused by small divergences of the correct path, but also because the

robot sometimes took a longer route around the pillar in the hallway. Surprisingly the

robot never had to use its recovery method. The number of times that the heading to the

subgoal could not be estimated did increase though. For one and two persons it could

still match 100% of the observations, but this decreased to 90% for the runs with three

person and four persons.

During the test with 4 persons an additional thing happened. Because no collision

avoidance was used and the robot was sometimes heading for a doorpost or the pillar, we

had to stop it manually and push it back. This happened 3 times.

B.6 Conclusion

We presented a navigation system that can use an appearance based topological map as

its representation of the environment. The robot is able to find and traverse paths in the

visual domain and can navigate from one state to the other. The found paths do not differ

significantly with paths taken by a human, when comparing the path lengths.

Navigation proved to be robust in a dynamic environment with people walking close

to the robot. Our navigation system is based on a search for a path given all the im-

ages available. This in contrast to existing systems for visual navigation, which drive

over predefined paths of images, which were learnt during the exploration phase or even

hard coded in a map given to the robot. Our approach is robust against changes in the

environment and persons or objects blocking certain paths.

Note that our navigation system is based only on an omnidirectional vision system.

This same sensor can be used for a range of other tasks such as object or person detec-
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tion. Also the appearance based map we use for navigation, is used in other work for

localization and conceptualization, splitting the map into rooms, corridors, etc.

Currently we are integrating the navigation approach in a more complete robot system

that incorporates people detection, people following and exploration. All these methods

make use of the same omnidirectional vision system.
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C Moving from augmented to

interactive mapping

Topological view-based maps are very suitable for adding semantic information such as

room labels. Here we show that a real time view-based mapping system allows a robot

to interactively add and disambiguate semantic information while driving around and

building the map. The system is demonstrated in a small real home environment. In

order to perform mapping in real time the Connected Dominating Set based mapping

procedure was used as explained in Chapter 5.

This appendix was presented earlier as a paper in the Workshop Interactive Robot

Learning at the Robotics: Science and Systems conference in 2008 and was published in

its proceedings (Booij et al., 2008). It contains some overlap with the rest of the thesis.

C.1 Introduction and problem statement

Recently there has been a growing interest in human augmented mapping (A. Diosi and

Kleeman, 2005; Spexard et al., 2006). That is: a mobile robot builds a low level spatial

representation of the environment based on its sensor readings while a human provides

labels for human concepts, such as rooms, which are then augmented or anchored to

this representation or map (Saffiotti and LeBlanc, 2000). Given such an augmented map

the robot has the ability to communicate with the human about spatial concepts using

the labels that the human understand. For instance, the robot could report it is in the

“Kitchen”, instead of a set Cartesian coordinates which are probably meaningless to the

human.

Even if the underlying mapping method is perfect, two main problems occur in the

approach of augmented mapping. When guiding a robot through a number of rooms,

humans tend to not provide labels for every visited room (Topp et al., 2006). The result

is that the robot has difficulty to model where one room ends and the other room starts.

This problem could be solved by detecting room transitions through the sensor data.

Although good attempts using such an approach have been made in office environments

(Zender et al., 2008; Martı́nez-Mozos et al., 2007), applying these to other environments

such as real homes is nontrivial. Another problem is that the generalization of the labeled

map to newly acquired sensor data can be much different from the humans ideas. That

is: there is a mismatch between the human representation and the representation of the

robot. In our case the robots generalizes labels using visual similarities, while humans

could use the function of the room. Even among humans there are differences between

spatial representations. Think of a living room with an open kitchen. Where does the

living room end and the kitchen begin?

Our solution to both of these problems is to use pro-active human robot interaction. We
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Figure C.1: Biron and human guide in a home environment.

briefly describe how the robot learns a map of the environment using a vision sensor and

active dialog with a human guide. The method is implemented on Biron (the Bielefeld

Robot Companion), see Figure C.1, which supports an integrated human robot interaction

system based on XCF (XML Communication Framework) complete with person atten-

tion, spoken dialog, person following, gesture recognition and localization components

(Fritsch et al., 2005).

C.2 Augmented mapping

C.2.1 Appearance based topological mapping

To map the environment we take images with an omnidirectional vision system. From

each image SIFT features are extracted which are used to find image point correspon-

dences between pairs of images by matching their SIFT descriptors. False point corre-

spondences are then removed by imposing the epipolar constraint. We define a distance

measure between two images i and j by:

dij =
min(#SIFTSi, #SIFTSj)

#correspondencesij

,

where #SIFTSi denotes the number of SIFT features extracted from an image i, and

#correspondencesij denotes the number of correspondending features of images i and j,

that are constrained by an epipolar geometry.

These computed distances are put in a graph representation in which the nodes denote

the images and distances are put on the links, effectively creating a topological map of
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This is the 
living

R  O  B  O  T  I  C  S
ActivMedia

(a)

Living

Kitchen

(b)

the hallway
No, this is

Are we entering the 

the kitchen?

R  O  B  O  T  I  C  S
ActivMedia

(c)

Kitchen

Living

Hallway

(d)

Figure C.2: A sketch of the proposed method. (a) The human guide provides a label. (b)

After a second label is provided the map consists of two subgraphs. (c) The

robot reports a room transition on which the human provides feedback. (d)

The feedback is used to update the map.

the environment. If the distance is above a certain threshold (which was set to 10 in our

experiments) then no link was created.

The complete map building system runs in real time on one of the robot-laptops, pro-

cessing about one new image per second. To keep the number of comparisons limited we

used the Connected Dominating Set method to pick key images from the previous image

set. For an in depth treatment of this map building scheme see (Booij et al., 2006).

C.2.2 Human augmentation of room labels

While the robot is driving through the environment following the human guide and build-

ing a topological map, room-labels can be provided to the robot, see Figure C.2.2 for an

example. This is performed by commanding the robot to stop and telling the robot the

name of the room it is in, e.g. “This is the kitchen” (see Figure C.2(a)). To handle mis-

communication, a powerful grounding-based dialog system is used that can handle com-

plex conversational repair behavior and facilitate a smooth conversation (see (Spexard

et al., 2006) for more information). The given label is then added to the next node (im-

age) that is added to the map.

Using the given labels and the structure of the graph the robot can partition the map

into different subgraphs. Every node is assigned to that label corresponding to the clos-
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est labeled node computed with Dijkstra’s shorter path algorithm (Dijkstra, 1959) (see

Figure C.2(b)). Effectively we are exploiting here the fact that images taken in a convex

space, which usually correspond to the notion of rooms, are visually much more similar

than images taken while the robot moved through a narrow passage, a door.

C.3 Interactive mapping

As can be seen in Figure C.2(b) the transition from the “Living room” to the “Dining

room” is probably not learned in the way the human had in mind when giving the labels.

The human would probably not notice this until it would send the robot to the “Living

room” after which the robot would move to the hallway. This can easily be solved by

making the robot pro-actively interact with the human.

Every time the robot adds a new image to the map it computes its corresponding label.

If this label is different than the label of the previously added node, the robot reports this

to the human in the form of a question. In the case of Figure C.2(c) the robot asked “We

just entered the living room, right?”. The human now has the opportunity to provide feed-

back, possibly reducing the mismatch with his/her own representation, see Figure C.2(d).

If later the robot would really enter the “Living room” it will again report this to the hu-

man confirming that it has correctly learned the transition.

A technical detail is that the robot does not stop driving while reporting room change to

the human, so as to not interrupt the tour. Thus new nodes are added to the graph while

it awaits an answer. The possibly corrected label is put on the node which triggered

the robot. This could lead to race conditions if there are a lot of transitions close to

each other, e.g. if different locations in the room are also labeled. In the conducted

experiments, however, we did not experience such problems.

C.4 Results

The new interactive mapping approach was recently implemented on the Biron robot.

First test trials were performed in a rented apartment at Bielefeld which was furnished to

look like a real home environment. See http://www.science.uva.nl/˜obooij/

research/mappingHRI/index.html which features a video shot during one of

the trials illustrating the capabilities of the complete interactive mapping system.

The robot captured panoramic images once every 2 seconds and the tour took around 5

minutes resulting in a total set of 158 images. The complete mapping system, including

the image processing, is performed during the tour in real-time on one of the laptops

attached to the robot.

In Figures C.3(a)-(e) the spatial representation is plotted using hand-corrected odome-

try data. Note, however, that this odometry data was not used by the mapping algorithm.

In Figure C.3(a) the robot drove from the living room at the bottom right of the figure

through the hallway to the kitchen on the upper left. By then the only label that was given

was in the living room, so it groups every new node with that label. In Figure C.3(b) it is

provided a new label “Dining room” and as can be seen the graph is split into two groups

according to their distance over the graph. The cut between these two groups is located

somewhere inside the small hallway.
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Figure C.3: The spatial representation built by the robot. The different symbols denote

nodes (images) of the graph. The lines between the symbols denote links

between the lines, with darker colored lines representing links with a smaller

distance. Circles denote nodes belonging to the “Living room”, squares to

the “Dining room” and pentagons to the small “Hallway”. Symbols linked

with a label represent nodes that were labeled by the guide. In addition part

of the ground-truth floor map is plotted on top for reference.
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This became apparent to the guide in Figure C.3(c) where the robot was guided back to

the hallway. The robot proactively starts a dialog by asking the guide “Did we just enter

the Living Room?”. The guide can then correct the robot by giving it an other existing

or new label. In the experiment the guide gives the new label “Hallway”. This new label

is added to the map, splitting the graph in three parts, see Figure C.3(d). After reentering

the living room the robot again asked if this was the “Living room” which was confirmed

by the guide resulting in another node being labeled. In Figure C.3(e) the final spatial

representation is shown as built by the robot.

C.5 Conclusion

We have shown that using relatively simple human robot interaction techniques we can

solve two problems apparent in augmented mapping systems. The robot actively asks

the labels of rooms that were not labeled at the first visit and decreases the mismatch

between the human representation of room transitions and the robots representation. The

complete system can be run in real time on a laptop and has been shown to work in a real

home environment.

Future work is directed to gathering larger evidence for the feasibility of the interactive

localization approach. The system scales well to larger environments and is flexible

because it uses only a vision sensor.
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O. Booij, Z. Zivkovic and B. Kröse. Efficient probabilistic planar robot motion esti-

mation given pairs of images. In Proceedings of Robotics: Science and Systems, 2010.

Chapter 3.
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Dankwoord1

Er zijn een aantal mensen die hebben bijgedragen aan het verschijnen van dit proefschrift.

Zonder hen was ik allang gestopt met mijn AiO-schap om iets veel leukers te doen.

Allereerst mijn begeleiders Ben en Zoran. Zoran heeft me geleerd dat technische ken-

nis en wetenschappelijk inzicht samen leiden tot praktisch oplossingen. Zijn pragma-

tische en efficiënte aanpak inspireert me. Ben heeft me geleerd hoe over die gevonden

oplossingen te publiceren. Ik waardeer ook zijn directe manier van het benaderen van

mensen (hij leerde me dat wetenschappers ook gewoon een telefoon hebben). Vooral de

laatste jaren heeft hij flink wat bergen moeten verzetten om mij zo ver te krijgen mijn

proefschrift af te ronden. Mijn dank hiervoor.

Het samenwerken met IASers en ook ISISers was leuk en leerzaam. Het was Bas die

er voor zorgde dat mijn software kon draaien op diverse robots. Eigenlijk was hij de

enige die daadwerkelijk iets aan intergratie deed in het “Intergrating Project” Cogniron.

De datasets die ik heb gebruikt voor dit proefschrift zijn voor een groot deel door hem tot

stand gekomen. Mijn kamergenoten (Carsten, Michael, Thanasis en vast nog iemand die

ik vergeet) zorgden voor de nodige afleiding en ook voor het delen van proefschriftleed.

Doordat ik hen zag ploeteren, dacht ik dat het erbij hoorde, bedankt.

En dan een dankbaarheid van een hele andere orde. In de maand dat ik begon aan

mijn AiO-schap bleek Jurny zwanger te zijn. Een kleine negen maanden later met Koen

erbij zag ons leven er opeens heel anders uit. Ik leerde dat het eigenlijk niet kan: jonge

kinderen en AiO-schap. Jurny heeft haar ambities opzij gezet, om er voor te zorgen dat

ik verder kon werken aan mijn proefschrift. Ze heeft vaak voor zowel moeder als vader

gespeeld, wanneer ik mijn roes lag uit te slapen na een nachtje doorwerken, of ergens bij

een conferentie aan het feesten was. Ik zal het, na vandaag, nooit meer doen.

1In dutch
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Summary

A common task for a mobile robot, is to build a map of its environment. It needs such

a map to localize itself in the environment, and to navigate to a specific place. In this

thesis, we propose methods to build such a map on the basis of images. These images

are taken with a camera that is mounted onto the robot. The methods are specifically

developed for robots operating in real home environments, such as autonomous vacuum

cleaners. Therefore, all methods are evaluated on image sets which were acquired in real

home environments.

Building a map is particularly difficult in human inhabited home environments. We

can identify two main challenges. First, the captured images are often of poor quality.

As opposed to brightly lit office spaces and outdoor environments, home environments

usually have bad lighting condition. On top of this, humans can block the view of the

robot and change the appearance of the environment, for example by switching off lights.

Such circumstances call for a robust mapping approach. Second, the robot should be able

to communicate with humans about the map and add labels, such as “kitchen” or “chair”,

to the map. To allow for such communication, during map building, the method should

be efficient enough to perform in real-time.

Different types of maps have been proposed to solve this robot task. In this thesis, we

focus on a specific type of map termed the “view-based topological map”. In Chapter

2, we see that this is a commonly used map in the field of vision-based robotics. It can

be seen as a graph for which each node denotes an image and each link between two

images denotes that they depict an overlapping part of the environment. The basic task

of map-building and localization is finding for a new image all other images that could

link with it. This later task is called “view-based data association” and depends on the

ability to compare images with each other.

Two images can be compared by automatically extracting a set of salient image points

from both of them and matching these sets to obtain a number of image point correspon-

dences. If two images depict an overlapping part of the environment, then the spatial

layout of the correspondences depends greatly on the relative robot pose. This relative

pose can be parameterized by a rotation and a translation up to scale. To make image

comparison robust and efficient, it is beneficial to incorporate constraints on the possible

robot poses. We thoroughly investigate how the assumption that the robot moves over a

planar surface can be used to improve existing algorithms. We derive an algorithm that

computes the planar relative pose given only two correspondences and combine it with

the well-known RANSAC algorithm (RANdom SAmple Consensus). On top of that, we

propose an efficient method based on the Hough Transform that determines a probability

density over the space of all planar relative poses. On the one hand, this can be used to

estimate the relative pose given two images. In Chapter 3, we show that our relative pose

solution is more accurate and efficient than the popular RANSAC-based method. On the

other hand, it can be used as an image similarity measure, by estimating the probability
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that robot pose is indeed correct. In Chapter 4, we show that this image similarity mea-

sure is better than existing measures used for both topological view-based mapping and

the related task of image-based place recognition.

Even if an efficient image comparison method is used, for very large view-based maps

with thousands of images, it becomes infeasible to compare with all images. In Chapter 5,

we propose a method that finds a set of key images that best represents the complete set

of images of the map. This set of key images defines a subgraph of the complete graph

representing the map. It is based on a graph theoretic technique called the “Connected

Dominating Set” (CDS). We explain why this algorithm is the optimal choice and how

it can be used for view-based mapping and localization procedures. The results of these

procedures are close to the ones obtained when comparing with all images, while being

an order of magnitude faster.

Combining the image comparison technique with the CDS method, results in scalable

real-time data association. We show, in two appendices, that this can be used to per-

form real-time interactive map-building and goal-directed navigation. In addition, the

proposed data association method could be used to improve existing SLAM systems (Si-

multaneous Localization And Mapping). This would allow for efficient and robust 3D

geometric map-building of real home environments.
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Een standaard taak voor een mobiele robot is het maken van een kaart van zijn omgeving.

Deze heeft de robot nodig om zich te kunnen lokaliseren in zijn omgeving en om te

kunnen navigeren naar een bepaalde plek. Dit proefschrift presenteert methodes voor

het maken van zo’n kaart op basis van foto’s. Deze foto’s worden gemaakt met behulp

van een camera die op de robot zelf is gemonteerd. De methodes zijn specifiek bedoeld

voor robots die bij mensen thuis rondrijden, zoals automatische stofzuigers. Voor het

testen van de methodes wordt daarom gebruik gemaakt van foto’s die in echte huizen

zijn genomen.

Een kaart maken van foto’s van een bewoond huis is moeilijk. Er zijn twee proble-

men. Ten eerste zijn foto’s die de robot in een huis maakt vaak van een relatief slechte

kwaliteit. In vergelijking met goed verlichte kantoorruimtes en buiten omgevingen, zijn

huizen meestal slecht verlicht. Bovendien kunnen mensen het zicht van de robot ontne-

men en ook de omgeving zelf veranderen, bijvoorbeeld door lichten uit te doen. Zulke

omstandigheden vragen om een robuuste aanpak voor het maken van kaarten. Ten tweede

moet de robot kunnen communiceren met mensen over de kaart en labels kunnen toevoe-

gen, zoals “keuken” of “stoel”. Om er voor te zorgen dat zulke communicatie al tijdens

het kaart maken kan plaats vinden, moet de aanpak efficiënt genoeg zijn om in real-time

te kunnen draaien.

Standaard robot taken, zoals lokalisatie, kunnen met behulp van verschillende soorten

kaarten worden uitgevoerd. In dit proefschrift gebruiken we een specifiek soort kaart,

genaamd “view-based topological map”. In Hoofdstuk 2 laten we zien dat dit een veel ge-

bruikt type kaart is in het onderzoeksveld van de robotica. Het is eigenlijk een soort graaf

waarin de knopen de foto’s voorstellen en een verbinding tussen twee knopen aangeeft

dat de foto’s een overlappend deel van de omgeving tonen. De kerntaak voor het maken

van zo’n kaart is om voor elke nieuw genomen foto, bestaande foto’s te vinden, waarmee

het verbonden kan worden. Dit laatste wordt “view-based data association” genoemd en

is afhankelijk van de mogelijkheid om twee foto’s met elkaar te vergelijken.

Twee foto’s kunnen met elkaar vergeleken worden door kenmerkende beeldpunten

van beide foto’s te vergelijken om zodoende een set van paren beeldpunten te krijgen.

Als de foto’s een overlappend deel van de omgeving laten zien, dan zullen de posities

van deze paren beeldpunten afhankelijk zijn van de relatieve pose van de robot. Deze

relatieve pose kan beschreven worden door een relatieve rotatie en een translatie van on-

bepaalde grootte. Om de vergelijking van foto’s robuust en efficiënt te maken, is het

handig om het aantal mogelijke robot poses te beperken. Wij hebben grondig onder-

zocht hoe we gebruik kunnen maken van het feit dat de robot over een vlakke vloer

rijdt en dus alleen planaire bewegingen kan maken. We hebben een algoritme afgeleid

dat de planaire relatieve pose kan bepalen uit twee punt-paren en hebben dit gecombi-

neerd met het bekende RANSAC algoritme (RANdom SAmple Consensus). Bovendien

2In dutch

153



Samenvatting

hebben we een efficiënte methode ontwikkeld op basis van de Hough Transform, om de

kansdichtheid te bepalen over alle mogelijke planaire relatieve poses. Aan de ene kant

kan deze methode gebruikt worden voor het schatten van de juiste relatieve pose. In

Hoofdstuk 3 laten we zien dat onze oplossing hierin nauwkeuriger en efficiënter is dan

de populaire op RANSAC gebaseerde methode. Aan de andere kan kan deze methode

ook gebruikt worden om foto’s te vergelijken. Dit wordt gedaan op basis van de kans van

de geschatte pose. In Hoofdstuk 4 laten we zien dat deze vergelijkingsmaat beter werkt

dan bestaande maten, die gebruikt worden voor “view-based mapping”, en het daaraan

verwante “image-based place recognition”.

Maar zelfs met deze efficiënte methode, is het zo dat bij grote kaarten bestaande uit

duizenden foto’s, het niet praktisch is om alle foto’s met elkaar te vergelijken. In Hoofd-

stuk 5 presenteren we een methode dat een selectie van de foto’s maakt die het beste de

volledig set van foto’s beschrijft. Deze subset van foto’s definieert een subgraaf van de

complete graaf van de “view-based map”. Deze subgraaf wordt gevonden door middel

van een techniek uit de graven-theorie, genaamd “Connected Dominating Set” (CDS).

We leggen uit waarom deze methode de optimale oplossing produceert en hoe het ge-

bruikt kan worden in procedures om een kaart te maken en om te kunnen lokaliseren.

De uitkomsten van die procedures wijken nauwelijks af van die verkregen met een naı̈ve

aanpak, waarin alle foto’s met elkaar worden vergeleken. Echter onze procedures zijn

een orde van grootte sneller.

Door de ontwikkelde methodes te combineren ontstaat een schaalbare real-time oploss-

ing voor de “data association” taak. In twee appendices tonen we aan dat zulke oplossin-

gen gebruikt kunnen worden om op een interactieve manier een kaart van een huis te

maken en doelgericht te kunnen navigeren. Bovendien zijn de methodes zeer bruikbaar

voor het verbeteren van bestaande SLAM applicaties (Simultaneous Localization And

Mapping). Dit kan resulteren in een efficiënte en robuuste manier voor het maken van

geometrische modellen in 3D van bewoonde huizen.
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