Efficient probabilistic planar robot motion estimation given pairs of images

Olaf Booij, Zoran Zivkovic, Ben Kröse

Intelligent Systems Lab Amsterdam University of Amsterdam, The Netherlands

RSS 29-6-2010

How to compute the pose likelihood p(correspondence|pose)

Outline

Related work

Proposed method

Evaluation

Discussion

Conclusions

Outline

Related work

Proposed method

Evaluation

Discussion

Conclusions

Related work: solving p(correspondence | pose)

Relation correspondence, pose

- non-linear 2 correspondences
- ▶ linear for >=3 correspondences

Observation error

- gaussian noise for correct matches (inliers)
- uniform noise for mismatches (outliers)

Find best fit

- ► RANSAC et al. + 3 or 2 point estimator
- ▶ M-Estimators/Bundle adjustment/EM
- -> ML solution (+ local uncertainty)
- R. Hartley and A. Zisserman "Multiple view geometry in computer vision" P. H. S. Torr and A. Zisserman "MLESAC: a new robust estimator with application to estimating image geometry"
- D. Ortín and J. M. M. Montiel "Indoor robot motion based on monocular images"

Related work: solving p(correspondence | pose)

Relation correspondence, pose

- non-linear 2 correspondences
- ▶ linear for >=3 correspondences

Observation error

- gaussian noise for correct matches (inliers)
- uniform noise for mismatches (outliers)

Find best fit

- ► RANSAC et al. + 3 or 2 point estimator
- M-Estimators/Bundle adjustment/EM
- -> ML solution (+ local uncertainty)
- R. Hartley and A. Zisserman "Multiple view geometry in computer vision" P. H. S. Torr and A. Zisserman "MLESAC: a new robust estimator with application to estimating image geometry"
- D. Ortín and J. M. M. Montiel "Indoor robot motion based on monocular images"

Related work: solving p(correspondence | pose)

Relation correspondence, pose

- non-linear 2 correspondences
- ▶ linear for >=3 correspondences

Observation error

- gaussian noise for correct matches (inliers)
- uniform noise for mismatches (outliers)

Find best fit

- RANSAC et al. + 3 or 2 point estimator
- M-Estimators/Bundle adjustment/EM
- -> ML solution (+ local uncertainty)
- R. Hartley and A. Zisserman "Multiple view geometry in computer vision" P. H. S. Torr and A. Zisserman "MLESAC: a new robust estimator with application to estimating image geometry"
- D. Ortín and J. M. M. Montiel "Indoor robot motion based on monocular images"

Related work: problems

Inlier error is not gaussian

- modeling error
- calibration error
- discretization error
- non-planarity error
- scene dependent

Outlier error is not uniform

- SIFT +/ 30 degrees viewangle difference
- scene dependent (floor featureless?)

Solution is not gaussian

- multiple modes
- degenerate cases (unobservability)

Related work: problems

Inlier error is not gaussian

- modeling error
- calibration error
- discretization error
- non-planarity error
- scene dependent

Outlier error is not uniform

- SIFT +/ 30 degrees viewangle difference
- scene dependent (floor featureless?)

Solution is not gaussian

- multiple modes
- degenerate cases (unobservability)

Related work: problems

Inlier error is not gaussian

- modeling error
- calibration error
- discretization error
- non-planarity error
- scene dependent

Outlier error is not uniform

- SIFT +/ 30 degrees viewangle difference
- scene dependent (floor featureless?)

Solution is not gaussian

- multiple modes
- degenerate cases (unobservability)

Outline

Related work

Proposed method

Evaluation

Discussion

Conclusions

Proposed method: overview

General idea

- model p(correspondence | pose) using non-parametric model
- discretize both correspondence and pose
- create look-up-table for all correspondence-pose combinations
- use existing data (learning!)

Problems to overcome

- ▶ look-up-table should be low dimensional
- i.e. bin-size should be small

Proposed method: overview

General idea

- model p(correspondence | pose) using non-parametric model
- discretize both correspondence and pose
- create look-up-table for all correspondence-pose combinations
- use existing data (learning!)

Problems to overcome

- look-up-table should be low dimensional
- i.e. bin-size should be small

Proposed method: parameterization

Planar pose parameterization

- 2 angles are enough
- Note: scale is not parameterized
- ▶ Alternative representation using ω ($\omega = \pi + \phi_L \phi_R$)

Proposed method: parameterization

Planar pose parameterization

- 2 angles are enough
- Note: scale is not parameterized
- ▶ Alternative representation using ω ($\omega = \pi + \phi_L \phi_R$)

Proposed method

Correspondence parameterization (perspective case)

- ▶ Vertical angle $\alpha = \arctan(y)$
- ▶ Horizontal angle β = arctan(x)

Proposed method

Function relating correspondence to pose

$$\phi_R - \beta_R = \arcsin\left(rac{ an(lpha_R)}{ an(lpha_L)}\sin(eta_L - \phi_L)
ight).$$

the likelihood thus involves 6 parameters:

$$p(\alpha_L, \beta_L, \alpha_R, \beta_R | \phi_L, \phi_R)$$

- which would result in a 6 dimensional LUT
- using the correspondence-pose relation, we can approximate it:

$$\begin{aligned} \phi_R - \beta_R &= \arcsin\left(\frac{\tan(\alpha_R)}{\tan(\alpha_L)}\sin(\beta_L - \phi_L)\right). \\ \rho\left(\frac{\tan(\alpha_R)}{\tan(\alpha_L)}, \phi_L - \beta_L, \phi_R - \beta_R \middle| \phi_L \right. , \phi_R \right.) \\ &\propto \rho\left(\frac{\tan(\alpha_R)}{\tan(\alpha_L)}, \phi_L - \beta_L, \phi_R - \beta_R\right) \end{aligned}$$

the likelihood thus involves 6 parameters:

$$p(\alpha_L, \beta_L, \alpha_R, \beta_R | \phi_L, \phi_R)$$

- which would result in a 6 dimensional LUT
- using the correspondence-pose relation, we can approximate it:

$$\phi_{R} - \beta_{R} = \arcsin\left(\frac{\tan(\alpha_{R})}{\tan(\alpha_{L})}\sin(\beta_{L} - \phi_{L})\right).$$

$$p\left(\frac{\tan(\alpha_{R})}{\tan(\alpha_{L})}, \phi_{L} - \beta_{L}, \phi_{R} - \beta_{R} \middle| \phi_{L}^{\text{uni}}, \phi_{R}^{\text{uni}}\right)$$

$$\propto p\left(\frac{\tan(\alpha_{R})}{\tan(\alpha_{L})}, \phi_{L} - \beta_{L}, \phi_{R} - \beta_{R}\right)$$

So, what are we assuming?

- $\blacktriangleright \phi \beta$ models the horizontal angle with respect to the heading
- $ightharpoonup rac{ an(lpha_R)}{ an(lpha_L)}$ models ratio of the vertical angle.

So, what are we assuming?

- $\blacktriangleright \phi \beta$ models the horizontal angle with respect to the heading
- ▶ $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ models ratio of the vertical angle.

- ► For each image with ground truth pose
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT-slice.
- ► Compute $\phi_L \beta_L$ and $\phi_R \beta_R$ and add to the corresponding bin to pose prior $p(\phi_L, \phi_R)$
- ▶ Do not treat mismatches separately

For each image with ground truth pose

- For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick
- ► Compute $\phi_L \beta_L$ and $\phi_R \beta_R$ and add to the corresponding bin to pose prior $p(\phi_L, \phi_R)$
- Do not treat mismatches separately
- Finally namediae and lag each alice

- For each image with ground truth pose
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT-slice.
- ► Compute $\phi_L \beta_L$ and $\phi_R \beta_R$ and add to the corresponding bin to pose prior $p(\phi_L, \phi_R)$
- Do not treat mismatches separately
- Finally normalize and log each alice

- For each image with ground truth pose
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT-slice.
- ► Compute $\phi_L \beta_L$ and $\phi_R \beta_R$ and add to the corresponding bin to pose prior $p(\phi_L, \phi_R)$
- Do not treat mismatches separately
- Finally normalize and log each clica

- For each image with ground truth pose
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT-slice.
- ► Compute $\phi_L \beta_L$ and $\phi_R \beta_R$ and add to the corresponding bin to pose prior $p(\phi_L, \phi_R)$
- Do not treat mismatches separately

- For each image with ground truth pose
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT-slice.
- ► Compute $\phi_L \beta_L$ and $\phi_R \beta_R$ and add to the corresponding bin to pose prior $p(\phi_L, \phi_R)$
- Do not treat mismatches separately
- Finally normalize and log each slice

- For each image with ground truth pose
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT-slice.
- ► Compute $\phi_L \beta_L$ and $\phi_R \beta_R$ and add to the corresponding bin to pose prior $p(\phi_L, \phi_R)$
- Do not treat mismatches separately
- Finally normalize and log each slice

Proposed method: Using a LUT

- Begin with a log pose prior (eg. uniform)
- ▶ For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- ► Add it to the pose prior
- ► Perform exp() and normalize to get proper distribution

Proposed method: Using a LUT

- Begin with a log pose prior (eg. uniform)
- ▶ For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- ► Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- ▶ Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ▶ For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- Perform exp() and normalize to get proper distribution

- Begin with a log pose prior (eg. uniform)
- ► For each correspondence compute $\frac{\tan(\alpha_R)}{\tan(\alpha_L)}$ to pick LUT slice
- ▶ Shift it by β_L and β_R
- Add it to the pose prior
- Perform exp() and normalize to get proper distribution

Outline

Related work

Proposed method

Evaluation

Discussion

Conclusions

Pro's & Con's of LUT based method

con

- discretization error
- large memory usage

- no explicit error model
- small cpu usage
- full likelihood
 - multiple modes
 - unbiased estimate of confidence interval

Pro's & Con's of LUT based method

con

- discretization error
- large memory usage

- no explicit error model
- small cpu usage
- full likelihood
 - multiple modes
 - unbiased estimate of confidence interval

Pro's & Con's of LUT based method

con

- discretization error
- large memory usage

- no explicit error model
- small cpu usage
- full likelihood
 - multiple modes
 - unbiased estimate of confidence

Pro's & Con's of LUT based method

con

- discretization error
- large memory usage

- no explicit error model
- small cpu usage
- full likelihood
 - multiple modes
 - unbiased estimate of confidence interval

Pro's & Con's of LUT based method

con

- discretization error
- large memory usage

- no explicit error model
- small cpu usage
- full likelihood
 - multiple modes
 - unbiased estimate of confidence interval

Model

- unlimited omnidirectional view
- only planar motion
- 100 points around camera, average distance 2*camera distance
- image projection noise of +/- .5 degrees

LUT

- ▶ 128³ bins
- ▶ 10¹⁰ samples

Simulation - vary number of mismatches

Simulation - vary out of plane rotation

Simulation - vary out of plane rotation

Real home data

- omnidirectional camera mounted on Nomad Scout or Biron
- 3 real homes
- ► +/- 10⁴ images
- > 10⁶ image pairs
- ground truth from odometry+laser based SLAM

Almere set using simulated LUT vary distance

Spaan set using learned/simulated LUT vary distance

cpu-time in ms

M-Est 8pt	M-Est 3pt	M-Est 2pt	
3.6	3.8	0.68	

LUT binsize vs cpu-time

	256	128	64	32	16	8	4
ſ	10.1	1.3	0.25	0.070	0.034	0.022	0.016

Real home data - overview

Outline

Related work

Proposed method

Evaluation

Discussion

Conclusions

- Multiple modes
- Degenerate cases
- Uncertainty estimation, e.g. for SLAM
- Topological mapping using proper probability rather than the "geometric"

- Multiple modes
- Degenerate cases
- Uncertainty estimation, e.g. for SLAN
- Topological mapping using proper probability rather than the "geometric"

- Multiple modes
- Degenerate cases
- Uncertainty estimation, e.g. for SLAM
- ▶ Topological mapping using proper probability rather than the "geometric "

- Multiple modes
- Degenerate cases
- Uncertainty estimation, e.g. for SLAM
- ▶ Topological mapping using proper probability rather than the "geometric "

- Multiple modes
- Degenerate cases
- Uncertainty estimation, e.g. for SLAM
- Topological mapping using proper probability rather than the "geometric check"

- Multiple modes
- Degenerate cases
- Uncertainty estimation, e.g. for SLAM
- Topological mapping using proper probability rather than the "geometric hack"

Outline

Related work

Proposed method

Evaluation

Discussion

Conclusions

Conclusions

The developed LUT based pose estimator is

- more accurate
- more efficient
- easy to understand and implement

but also raises questions:

- ▶ How could we use a full likelihood in a SLAM algorithm?
- Is it as good for perspective images?
- Could non-uniform discretization be used?
- Is it applicable on non-calibrated cameras
- ▶ Does it work on features cheaper than SIFT

Conclusions

The developed LUT based pose estimator is

- more accurate
- more efficient
- easy to understand and implement

but also raises questions:

- How could we use a full likelihood in a SLAM algorithm?
- Is it as good for perspective images?
- Could non-uniform discretization be used?
- Is it applicable on non-calibrated cameras
- Does it work on features cheaper than SIFT

Thanks

Questions....