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Related work: solving p(correspondence | pose)
Relation correspondence, pose

» non-linear 2 correspondences
» linear for >=3 correspondences

Observation error

» gaussian noise for correct matches (inliers)
» uniform noise for mismatches (outliers)

Find best fit

» RANSAC et al. + 3 or 2 point estimator
» M-Estimators/Bundle adjustment/EM
» -> ML solution (+ local uncertainty)

R. Hartley and A. Zisserman "Multiple view geometry in computer vision"
P H. S. Torr and A. Zisserman "MLESAC: a new robust estimator with application to
estimating image geometry”

D Ortin and .l M M Montiel "Indoor robot motion baced on monociilar imaoes”
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» calibration error

» discretization error
» non-planarity error
» scene dependent
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Related work: problems
Inlier error is not gaussian

modeling error
calibration error
discretization error
non-planarity error
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scene dependent

Outlier error is not uniform

» SIFT +/ 30 degrees viewangle difference
» scene dependent (floor featureless?)
Solution is not gaussian

» multiple modes
» degenerate cases (unobservability)
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Proposed method: overview

General idea
» model p(correspondence | pose) using non-parametric
model
» discretize both correspondence and pose

» create look-up-table for all correspondence-pose
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» use existing data (learning!)



Proposed method: overview

General idea
» model p(correspondence | pose) using non-parametric
model
» discretize both correspondence and pose

» create look-up-table for all correspondence-pose
combinations

» use existing data (learning!)

Problems to overcome

» look-up-table should be low dimensional
» i.e. bin-size should be small
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Planar pose parameterization
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Proposed method: parameterization

Planar pose parameterization

» 2 angles are enough
» Note: scale is not parameterized
» Alternative representation using w (w = 7 + ¢, — ¢R)



Proposed method

Correspondence parameterization (perspective case)

» Vertical angle a = arctan(y)
» Horizontal angle g = arctan(x)



Proposed method

Function relating correspondence to pose

¢r — Br = arcsin (E:((Z'Z))

sin(3, — ¢L)> :



Proposed method: 3d LUT

» the likelihood thus involves 6 parameters:

p(aL, B, ar, BrIOL, #R)

» which would result in a 6 dimensional LUT

» using the correspondence-pose relation, we can
approximate it:
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Proposed method: 3d LUT

» the likelihood thus involves 6 parameters:

p(aL, B, ar, BrIOL, #R)

» which would result in a 6 dimensional LUT

» using the correspondence-pose relation, we can
approximate it:

¢r — Br = arcsin <izr;((2’z))

sin(8L — ¢L)> :

qﬁgni’qjgni)

tan(a,q)
<tan(aL) 6L — BL, R — Br

(tan(a,q)

tan(aL)

6L — BL, R — 5/?)



Proposed method: 3d LUT

So, what are we assuming?

» ¢ — 0 models the horizontal angle with respect to the
heading



Proposed method: 3d LUT

So, what are we assuming?

» ¢ — (0 models the horizontal angle with respect to the
heading

tan(ag)

> tan(ay)

models ratio of the vertical angle.

tan(ag)
tan(ary,)
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Proposed method: Building a LUT

v

For each image with ground truth pose

tan(an)
tan(ay)

v

For each correspondence compute
LUT-slice.

Compute ¢, — 3, and ¢g — Sr and add to the
corresponding bin to pose prior p(¢., ¢R)

Do not treat mismatches separately
Finally normalize and log each slice

to pick
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Proposed method: Building a LUT
LUT
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For each image with ground truth pose

tan(a,q)
tan(ay)

v

v

For each correspondence compute
LUT-slice.

Compute ¢; — B and ¢r — Br and add to the
corresponding bin to pose prior p(¢, ¢R)

Do not treat mismatches separately
Finally normalize and log each slice

to pick
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Proposed method: Using a LUT

» Begin with a log pose prior (eg. uniform)

tan(ag)
tan(ay)

» For each correspondence compute
» Shiftit by 5, and Gr

» Add it to the pose prior

» Perform exp() and normalize to get proper distribution

to pick LUT slice
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Evaluation: Qualitative

Pro’s & Con’s of LUT based method
pro

» no explicit error
model

» small cpu usage
» discretization error » full likelihood

» large memory usage » multiple modes
» unbiased
estimate of
confidence
interval

con



Evaluation: Simulator

Model
» unlimited omnidirectional view
» only planar motion

» 100 points around camera, average distance 2*camera
distance

» image projection noise of +/- .5 degrees

LUT

» 1283 bins
» 10'0 samples



Evaluation: Simulator

Simulation - vary number of mismatches
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Evaluation: Simulator

Simulation - vary out of plane rotation
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Evaluation: Simulator

Simulation - vary out of plane rotation
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Evaluation: Image datasets

Real home data

» omnidirectional camera mounted on Nomad Scout or Biron

» 3 real homes

» +/- 10* images

» > 108 image pairs

» ground truth from odometry+laser based SLAM
Almere Spaan Biron




Evaluation: Image datasets
Almere set using simulated LUT vary distance
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Evaluation: Image datasets
Spaan set using learned/simulated LUT vary distance
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Evaluation: Image datasets
cpu-time in ms
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Evaluation: Image datasets

median heading error

median rotation error

inradians
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Real home data - overview

Spaan 1 |
|
|
|
|
|
|
|
B 2 |
. : :

" RANS+Mest  LUT sim LUT red RANS+Mest  LUT sim LUT real RANS+Mest LUTsim LUT real
09 T T

o8 Almere 4 i Spaan 1 i Biron1

X | |
07 | |
| |
06 ! !
05 : :
| |
- !
) )

RANS+Mest  LUT sim LUT rea RANS+Mest  LUT sim LUT real RANS+Mest  LUT sim LUT rea




Outline

Discussion



Discussion: Full likelihood
Advantage of having full likelihood

» Multiple modes




Discussion: Full likelihood
Advantage of having full likelihood

» Multiple modes




Discussion: Full likelihood
Advantage of having full likelihood

» Multiple modes
» Degenerate cases

EE G



Discussion: Full likelihood
Advantage of having full likelihood
» Multiple modes

» Degenerate cases
» Uncertainty estimation, e.g. for SLAM




Discussion: Full likelihood
Advantage of having full likelihood

» Multiple modes
» Degenerate cases
» Uncertainty estimation, e.g. for SLAM

» Topological mapping using proper probability rather than
the "geometric check"




Discussion: Full likelihood
Advantage of having full likelihood

» Multiple modes
» Degenerate cases
» Uncertainty estimation, e.g. for SLAM

» Topological mapping using proper probability rather than
the "geometric hack"
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Conclusions

The developed LUT based pose estimator is
» more accurate
» more efficient
» easy to understand and implement
but also raises questions:
How could we use a full likelihood in a SLAM algorithm?
Is it as good for perspective images?
Could non-uniform discretization be used?
Is it applicable on non-calibrated cameras
Does it work on features cheaper than SIFT

v
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Thanks

Questions....
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