
Temporal Pattern Classification using

Spiking Neural Networks

Olaf Booij

Temporal Pattern Classification using Spiking
Neural Networks

Master’s thesis Artificial Intelligence,

specialization Intelligent Autonomous Systems.

Under supervision of

Hieu Tat Nguyen

and

Marcel Worring

August 2004

by

Olaf Booij

Intelligent Sensory Information Systems
Informatics Institute
Faculty of Science
Universiteit van Amsterdam

A novel supervised learning-rule is derived for Spiking Neural Networks (SNNs) using
the gradient descent method, which can be applied on networks with a multi-layered
architecture. All existing learning-rules for SNNs limit the spiking neurons to fire only
once. Our algorithm however is specially designed to cope with neurons that fire multiple
spikes, taking full advantage of the capabilities of spiking neurons. SNNs are well-suited
for the processing of temporal data, because of their dynamic nature, and with our learn-
ing rule they can now be used for classification tasks on temporal patterns. We show
this by successfully applying the algorithm on a task of lipreading, which involves the
classification of video-fragments of spoken words. We also show that the computational
power of a one-layered SNN is even greater than was assumed, by showing that it can
compute the Exclusive-OR function, as opposed to conventional neural networks.

keywords: spiking neural networks, temporal pattern recognition, classification, gra-
dient descent.

6

Contents

1 Introduction 9

1.1 Problem description . 11

1.2 Organization of this thesis . 12

2 Introduction to Spiking Neural Networks 15

2.1 Biological neurons . 15

2.2 Neuron models . 18

2.3 Spike Response Model . 20

2.4 Network architecture . 22

2.5 Spike coding . 25

2.6 Applications using Spiking Neural Networks 26

3 Learning algorithm for one-layered SNNs 29

3.1 Derivation of the learning-rule . 29

3.2 Parameter settings . 33

3.3 Related work . 35

3.4 Simple benchmark problem . 36

3.4.1 Task description . 36

3.4.2 Results . 37

4 Multi-layered networks 39

4.1 Necessity of more layers . 39

4.1.1 Background . 39

4.1.2 The Exclusive-OR problem . 40

4.1.3 Learning the XOR-function with one layer 45

4.1.4 Other non-linear functions . 46

4.2 Extending the learning-rule . 46

4.3 Benchmark tests . 49

4.4 Conclusion . 50

5 Lipreading benchmark 51

5.1 Introduction lipreading . 51

5.2 System overview . 52

5.3 Experiments . 53

5.3.1 Classify ”one” and ”two” . 55

7

5.3.2 Classify new person . 57
5.4 Conclusion . 58

6 Discussion and Conclusion 59

6.1 The algorithm . 59
6.2 Lipreading . 60
6.3 Computational power . 61
6.4 Future work . 61

8

1 Introduction

...
– Hello and welcome to the NS information-center. On which day

do you want to travel ?
– Tomorrow.
– So you want to travel tomorrow ?
– Yes, that’s right.
– At what time do you want to depart ?
– That doesn’t matter.
– So you want to depart at 5 o’clock in the afternoon ?
– Eh... well, it doesn’t matter.
– I didn’t understand you. Please answer with yes or no. Again: so

you want to depart at 5 o’clock in the afternoon ?
– Eh, yes.
– I didn’t understand you. Please answer with yes or no. Again: so

you want to depart at 5 o’clock in the afternoon ?
– Nevermind.

<click>...

Although this telephone conversation seems pretty awkward, it is being held hundreds
of times a day. We quickly realize that one of the persons is not a real human being but
a computer, programmed to ask a predefined set of questions1. Once again it becomes
clear that artificial intelligence has not accomplished what was envisioned 40 years ago.

It was expected that by now robots could interact with humans in a dynamic environ-
ment, without the requirement of a keyboard. The fact is that computers still have a very
hard time dealing with continuous streams of data in an intelligent manner. Although a
lot of artificial intelligence techniques have been developed for the processing of numeric
and symbolic data [13], there are very few intelligent techniques to cope with multimedia
and the performance is poor. We will focus on multimedia that are time-varying, such
as speech and video signals, while there is a growing demand for all sorts of automated
systems that can process this type of data In the example above we have already seen
that a computer had to perform a simple speech-recognition task, transforming an audio
signal into one of a limited set of words. Besides systems for audio-recognition there is

1A conversation with the speaking computer of the Dutch public transport information center (Reisin-
formatiegroep); translated from dutch.

9

also a growing need for tools that can process video-data, such as detecting criminal be-
havior with surveillance cameras or automated lipreading systems. Furthermore we can
think of applications such as robot-control, weather-prediction and scene-segmentation
in films. In all these tasks the notion of time is important and the processing system
has to cope with this characteristic.

It is common practice to accomplish these tasks using the same technology that is used
for the processing of static data. In numerous speech-recognition systems and other
signal-processing systems the dynamic data is represented spatially; that is, every time-
step is represented by a different element of the pattern-vector, which is fed to a static
recognizer, as if it was a 1-dimensional picture [53]. There are a few undesirable side
effects when using this technique [14]. First, the duration of the input-signal is fixed
by the size of the pattern-vector, while most signals that need to be compared differ in
length. Another problem is that the signal should be buffered before it can be processed
by the recognition system. In case of processing of audio-signals this only results in a
delay of the output. When this method is used for video-recognition, the extra problem
of memory-storage becomes significant, while the input then becomes a 3-dimensional
pattern, two for the pixel-location plus one for the location in time. A lot of systems
performing object recognition in video therefore discard the time aspect altogether. For
example, face-recognition in video is often done by trying to recognize the face in each
single video-frame using the same routines as for image-recognition [25].

Besides the practical disadvantages of applying methods designed for static data to time-
varying data, there are also some more theoretical drawbacks. The problem is that the
time domain is clearly different than the spatial domain. The most particular feature of
temporal data is causality: an event can only cause an effect in the future, not in the past.
This phenomenon is omnipresent in all types of temporal data. For example, sounds,
and especially musical tones, can usually be characterized by a sharp onset followed by a
relatively long gradual decay. This clearly reflects the causal effect of the production of
a tone at a certain moment of time, which results in a sound in the time-period following
it until it fades out. There is no equivalent of this phenomenon in the spatial domain.
For a better comprehension of dynamic data it is thus important to use a method that
does not discard these characteristics of temporal data.

There is actually only one technique that really tries to capture the temporal structure
of dynamic data called the Hidden Markov Model (HMM), which can learn to model a
set of signals from example patterns [46]. HMMs are very popular due to their success
in the field of speech-recognition and are thereby the dominating method in all studies
in which temporal data has to be processed. But the application of HMMs is not
without criticism. A big problem is that they were originally designed for discrete time
data streams and discrete input-variables, while a lot of real-world problems take place
in continuous time and require the processing of continuous variables such as sound-
volume and light-intensity. It would be advantageous to have a computational tool that
has less trouble in dealing with continuous values and could cope with tasks that occur
in continuous time.

10

A well established computational tool for dealing with real-valued data is the method
of Neural Networks (NNs), also called Parallel Distributed Processing systems (PDPs),
which are based on the biological neural network of vertebrates [7]. This method has
some interesting characteristics, that distinguishes it from other statistical methods.
When an NN learns a certain task it distributes the desired process over a large number
of very simple processing units. By doing this a network is created that is very fault-
tolerant, even when some of the processing units are removed; it is said that NNs degrade
gracefully. A negative aspect of this procedure is that it is hard to say how NNs solve
a certain task. A bigger problem with regard to temporal patterns is that practically
all types of NN-models are designed to process static data, so it is troublesome to apply
NNs on dynamic domains.

In the last ten years the aim of neural network research has shifted to models that
are more biologically plausible, that is, they mimic biological networks more closely.
One of these models is called the Spiking Neuron Network (SNN) and we will use this
model throughout our study [32, 18, 4]. An important feature of these SNNs is that
they model the propagation of the biological network through time and thus they are
by themselves continuous dynamic systems. This makes them especially suited for the
application on temporal patterns and could serve as an alternative to the HMM method.
However, SNN theory lacks an important component: there is no practical way to learn
the model to process temporal patterns. The presently available learning algorithms for
SNNs are all designed for static data and thus limit the representational power of the
dynamic neuron-models [5, 50]. What is needed is a learning-rule that changes the free
parameters in the SNN-model so to learn the appropriate output to a set of dynamic
inputs.

1.1 Problem description

In this study we will try to develop a learning algorithm for spiking neural networks, that
makes it possible for a network to learn to perform classification tasks on temporal data.
The trained network should produce an output that represents the category the input-
signal belongs to. So the architecture of the neural network must be constructed in such a
way that it can receive input and produce an output. A network that has this property is
the well-known layered feedforward construction. We will use this architecture, although
the resulting learning algorithm could be applied to a much more general set of spiking
networks.

The learning algorithm will be required to train the network in order to learn a specific
task using example pairs of input and output. After it has been trained the network
should be able to reproduce the correct output to a given training input, but also gener-
alize over the training-data to produce a correct answer to input it has not seen before,
such as noisy variants of the training-data. This method of learning through experience
is a very common procedure in neural networks and other computational techniques and
is referred to as supervised learning [2].

11

To evaluate the capabilities and the performance of the learning algorithm, it must be
applied to both artificially generated tasks and real-world problems. The data that is
involved in theses tasks must be transformed in such a way that it can be fed to the
learning algorithm. For artificial data this will not be a big problem, because we can
generate the required data ourselves. For a real-world task however this will be an
important issue, not only because it is harder to deal with real-world data, but also
because the performance of the algorithm will partially depend on the way the data is
fed to it.

Although the goal is to develop a system that can learn to classify temporal data and
thus provide an alternative to the Hidden Markov Models, we will not make an elaborate
comparison between the two techniques. Because both techniques need specific prepro-
cessing of the data, such a comparison would be too involved for this study. Another
problem in comparing computational techniques is that the existing computational tools
are fine-tuned to handle a certain task. For example, the systems that are used to per-
form speech-recognition have HMMs at the heart, but in addition all kinds of techniques
specially designed for HMMs are used to boost the performance. It is of course impos-
sible to design an algorithm from scratch that can beat such an expert-system. It will
take a lot of research before a speech-recognition system using SNNs can be build that
can be compared with the present systems. In this study the focus will be on develop-
ing a generic tool that can be used for all kinds of domains without the requirement of
incorporating prior knowledge into the system. Thus the user does not have to bother
with the technical details of the recognition system, which is one of the virtues of neural
network tools.

Because SNNs model biological neural networks more closely, a great deal of research is
being invested to also model the learning process of humans [17, 33]. We will however
take no effort in making our learning-rule biological plausible. Our research will only
aim at developing a working learning-rule that is computational efficient. As there is
not much known about the way humans learn, the algorithm could also be of interest
for the neuro-science community.

1.2 Organization of this thesis

The thesis is organized as follows.

First in chapter 2 spiking neural networks will be introduced including a mathematical
description of the specific model we will be using. A lot of terminology, partly originating
from the field of neuro-biology, introduced in this chapter will be used throughout the
thesis. Also the architecture of the network we will use will be described.

In chapter 3 the actual learning algorithm will be derived. We will first restrict ourselves
to an SNN architecture consisting of only an input- and an output-layer. Later in the
thesis we will extend this to a more general network with more layers. The algorithm
will be analyzed and tested on a simple artificial benchmark.

12

In Chapter 4 we will extend the developed learning-rule so it can also be applied to net-
work architectures of more layers. It will be shown that although the learning algorithm
without the extension is very powerful it can not compute all possible classification tasks.
The extended algorithm will be tested on data-sets that were impossible to classify.

Then, in chapter 5, the learning algorithm will be used to build a lipreading system,
which will be applied to a lipreading task. By doing this it will be shown that spiking
neural networks can be used for very practical purposes. It will also be a good test-case
for our algorithm.

Finally, in chapter 6, we will draw conclusions of our research given the results of the
experiments. Furthermore we will indicate possible improvements to the algorithm and
generally to the research of SNNs.

13

14

2 Introduction to Spiking Neural Networks

All organisms live in an dynamic environment and to be able to interact with it intel-
ligently, some have evolved a special organ: the brain. This complex organ can deal
with a large quantity of streams of input-information in a highly efficient manner. In
the field of Artificial Intelligence (AI) we want to imitate such a machine so it can be
used for all kinds of processing tasks. Looking more closely at the brain, we see that it
consists of a large number of nerve-cells, more specifically called neurons. These neurons
form connections with each other to compose a network, hence the name neural network.
The study of artificial neural networks, a sub-field of AI, tries to model these biological
neurons and by forming networks with these model-neurons wants to achieve the same
processing-qualities as the brain. The model we will use is called the Spiking Neuron
model, which is recently gaining much interest in in the field of artificial neural networks.

In this chapter we introduce these neural networks and describe the way we model
them. We will first explain how biological neurons work in section 2.1. Then, section
2.2 describes the different types of models of these neurons. Section 2.3 concentrates on
the Spiking Neuron Model, that we will use, and gives a formal definition. In 2.4 we
show the general architecture of the network that is used. The possible coding-schemes
for transforming an input-signal so it can be fed to a neural network is described in 2.5.
Finally in 2.6 we will give an overview of the application of spiking networks.

2.1 Biological neurons

In order to imitate biological neural networks as the brain it is important to understand
biological neurons, the building blocks of neural networks. Also, most of the terminology
used in artificial neural networks originated from their biological counterparts. In this
section we will introduce biological neurons and explain how they work.

Neurons are the actual processing units of the brain. The computation they do is very
simple and compared to silicon-chips very slow. A network of a large quantity of these
simple units however proves to be very powerful. A silicon-based computer usually has
only one processing unit, while in a neural network all the neurons work in parallel. To
form this network every neuron is connected with on average thousands of other neurons.

Although there are all kinds of different neurons the basic structure is the same. The
cell-body, or the soma, of the neuron has many fine branched fibers, called dendrites,
and one or more axons that extends away from the cell to other neurons and branches
at the end, see figure 2.1. The basic operation of neurons is as follows.

15

Axon

Soma

Dendrites

Figure 2.1: Drawing of a human neuron. The triangle-shaped soma is located at the
bottom with the dendritic tree around it. The axon extends upwards and
branches in on the top. Drawing of Ramon y Cajal.

16

Axon
Presynaptic neuron Synapses

Postsynaptic neuron

Pulses

Figure 2.2: Drawing of two connected biological neurons. When the presynaptic neuron
fires it sends a pulse along its axon to the synapses. At the synapses the
pulse causes a change in the potential of the postsynaptic neuron.

Neurons have a small negative electrical charge of -70 mV, their resting potential. Certain
stimuli from other neurons can cause the potential in the cell to rise. When the potential
reaches a threshold, typically around -55 mV, the neuron fires an electrical pulse along
its axon, also called a spike. At the end of the axon the axon-branches are connected
to dendrites of other neurons. This connection is called a synapse, see figure 2.2. When
a spike reaches such a synapse it causes a change of potential in the dendrites of the
receiving neuron. This process is relatively slow, so the effect is delayed with a certain
time typical for that synapse. The neuron that sends the spike is called the presynaptic
neuron and the one that receives it the postsynaptic neuron. Depending on the type
of synapse this change can be positive, raising the postsynaptic neurons potential, or
negative, lowering it. When it raises the potential and thereby can cause the neuron to
fire, the synapse is called excitory. When it lowers the postsynaptic neurons potential,
making it harder for that neuron to fire, the synapse is called inhibitory. The effect of
the potential-change is only temporal; after a while it fades away because the neuron
will always try to stay at its resting potential. After a neuron fired the spike it needs
some time to recover, before it is able to spike again. This time interval is called the
refractory period.

The type of the synapse, inhibitory or excitory, can never change, but the intensity of
the potential-change it causes can. This effect called synaptic plasticity, enables the
network to learn from past experience. Bioneurological research has already produced
lots of information on when and how these synapses change [38, 48]. This knowledge
however only concerns isolated neurons, not a bigger network. We still do not know how
biological neural networks like our brain learn.

As said, this is the basic operation, but there are a lot of different types of neurons
and synapses. Some types of neurons have very large axons, so they can influence other

17

brain-regions. Other neurons only compute locally, having both a short axon and short
dendrites. Some neuron-types only develop inhibitory synapses, others merely excitory.
Axons do not always form synapses with dendrites. Some form synapses with the cell-
body of an other neuron, so it has a bigger influence on it. Some even form inhibitory
synapses with other axons so to prevent that axon from propagating its spike.

A biological neural network is always built out of a mixture of these neuron-types. There
is no part in the human brain consisting of a homogeneous pool of one type of neurons.
These networks are highly recurrent; that is, there are a lot of loops present in the
network that facilitate positive and negative feedback.

It is clear that a single biological neuron is a very complex dynamic system. It would be
very hard to imitate such a neuron in all its detail, let alone imitating a highly recurrent
network of a heterogeneous pool of different neuron-types. Maybe we do not have to be
so accurate. A crude model could already exhibit some of the qualities of the brain.

2.2 Neuron models

In this section we will give a brief overview of models which simulate biological neurons.
In particular the sigmoidal neuron and the spiking neuron will be described and the
distinction between them.

One model is not necessarily better then another, but it is more a difference in the
level of abstraction. Some models try to simulate the neuron very accurately, taking all
the different biochemicals into account [37, 22]. Usually the aim of such models is not
to build a neural network, but to see what computations are possible with one single
neuron. Other models are much more abstract and do not describe the state of a neuron
in terms of molecules, but just by a real number, called its activation [49, 51]. With
these kind of models it is much easier to make a network and to figure out how to make
them learn something.

By far the most popular neuron-model is the sigmoidal unit [51], see figure 2.3. In
this model the output or activation of a neuron is modeled by a single variable, usually
between 0 and 1. The synapse between two neurons is modeled by a weight-variable
that describes the strength of the impact on the postsynaptic neuron. These weights do
not have to be positive, but also can be negative modeling an inhibitory synapse. The
sigmoidal neuron sums up all the weighted firing-rates of its presynaptic neurons to get
its potential. From this potential the activation is computed using an activation function.
This activation function is a sigmoid function, hence the name sigmoidal neuron [7].

The activation-variable in this model can be seen as the rate with which the neuron fires
its spikes; that is, the number of spikes in a certain time window. It was generally be-
lieved that this was the only information that was passed between two biological neurons
[47]. The so called neural-code of the neural-network is the firing rate. In recent years it
is argued that the firing rate can not be the only neural-code. Psychological experiments
have pointed out that some neural processing is too fast for this kind of computation

18

Neuron i

Neuron j

∑

yj =uj =
∑

i
wjiyi

wji
yi yj

F (uj)

Figure 2.3: The basic operation-steps of a sigmoidal unit are summation of its input
and calculating its activation. The output of neuron i is weighted by the
synapse connecting the two neurons giving the weighted input wjiyi. This
is summed for all inputs-neurons of neuron j to get the potential uj . Using
the sigmoidal function F (·) the activation yj is calculated. The form of this
function is shown in neuron i.

[58]. The neurons could not have calculated the average number of spikes in such a short
time. There also have been numerous neurobiological studies that point towards another
kind of neural-code [3, 47], that of precisely timed spikes: the information that is sent
from neuron to neuron is not coded in the firing rate of the spikes , but in the precise
timing of the spikes. This explains the high speed of neural processing.

Spiking neural networks (SNN) (also pulse-coupled or integrate-and-fire networks) are
more detailed models and use this neural-code of precisely timed spikes [32, 18, 4, 29].
The input and output of a spiking neuron is described by a series of firing-times, called
a spike-train, see figure 2.4. One firing-time thus describes the time a neuron has sent
out a pulse. Further details of the pulse like the form are neglected, because all pulses
of one neuron-type look alike.

The potential of a spiking neuron is modeled by a dynamic variable and works as a leaky
integrator of the incoming spikes: newer spikes contribute more to the potential then
older spikes. If this sum is higher than a predefined threshold the neuron fires a spike.
Also the refractory period and synaptic delay is modeled.

This makes an SNN a dynamic system, in contrast with the sigmoidal neuron networks
which are static, and enables it to perform computation on temporal patterns in a very
natural way.

19

∑

Spiking Neuron i

Spiking Neuron j

wji

dji

∑

Figure 2.4: The input and output of a spiking neuron are series of firing-times called
spike-trains. The firing-times are represented by vertical bars.

2.3 Spike Response Model

In this section we will present the spiking neuron model we will use, called the Spike
Response Model (SRM) [16]. The SRM formally describes how the incoming spike-trains
are processed to produce a new spike-train leaving the neuron.

The state of spiking neuron j in the SRM is described by its potential uj(t). When
this potential crosses a certain constant threshold-value ϑ the neuron fires a spike, that
is describes by its spike-time t(f). We will use a threshold-value ϑ of 1 for all our
simulations.

The output of neuron j is thus fully characterized by the array of spike-times:

Fj = {t
(f)
j ; 1 ≤ f ≤ n} = {t|uj(t) = ϑ}, (2.1)

where n denotes the number of spikes. The spike-train Fj is chronologically ordered; so,

if 1 ≤ f < g ≤ n, then t
(f)
j < t

(g)
j .

The potential of a neuron can change due to spikes of its presynaptic neurons i ∈ Γj ,
where

Γj = {i|i is presynaptic to j}. (2.2)

If presynaptic neuron i has fired a spike at time t
(g)
i ∈ Fi the potential of postsynaptic

neuron j at time t is raised by wjiε(t− t
(g)
i −dji). The variable wji denotes the weight of

the connection and dji denotes the delay of the connection. The spike response function
ε describes the effect the presynaptic spike has on the potential of the postsynaptic
neuron. Different mathematical formulations are possible but the shape of the function
is always a short rising part followed by a long decaying part and ε(s) = 0 for s ≤ 0 to
insure causality, see figure 2.5.

The formula we will use is the difference of two exponential decays [16]:

ε(s) =

[

exp

(

−
s

τm

)

− exp

(

−
s

τs

)]

H(s), (2.3)

20

dji
wji

t
(g)
i

t −→

Figure 2.5: The change in the potential of postsynaptic neuron j, given a spike of presy-

naptic neuron i is given by wjiε(t − t
(g)
i − dji). At time t

(g)
i the presynaptic

neuron i fires a spike, shown in the figure with the dashed vertical line. After
the delay of the connection, dji, the spike has an effect on neuron j scaled by
the weight wji. First the potential of postsynaptic neuron j increases fast,
followed by a long decay until the spike has no influence anymore.

where H(s) denotes the Heavy-side step function: H(s) = 0 for s ≤ 0 and H(s) = 1 for
s > 0. The two time-constants τm and τs (with 0 < τs < τm) control the steepness of
the rise and the decay of the function and more importantly they control the position
of the top of the function. In all simulations we used τm = 4.0 and τs = 2.0.

Another possible formulation of the spike response function, for example used in [43]
and [5], is given by:

ε(s) =
s

τ
exp

(

1 −
s

τ

)

H(s), (2.4)

where τ is a time constant controlling the rise- and decay-time. Although this function
looks very different, it behaves almost completely the same. If τ is set to 2.7, the top of
the function will be at approximately the same position as the ε-function we use.

Another process that changes the potential of a neuron is the refractoriness. This is

modeled by the refractory function η. If neuron j emitted a spike at t
(f)
j its potential

at t is lowered with η(t − t
(f)
j). Again the Simple Response Model does not fix this

function, but to insure causality it is required that η(s) = 0 for s ≤ 0 and it is usually
non-positive, see figure 2.6. We use a simple exponential decay:

η(s) = −ϑ exp

(

−
s

τr

)

H(s), (2.5)

where ϑ is the threshold of the neuron, H(s) is the Heavy-side step function and τr is
another time-constant. We used τr = 20.0 in all our simulations.

The formula of the potential of a neuron, uj(t), is the sum of the influence of the
presynaptic spikes and of its own spikes:

uj(t) =
∑

t
(f)
j

∈Fj

η(t − t
(f)
j) +

∑

i∈Γj

∑

t
(g)
i

∈Fi

wjiε(t − t
(g)
i − dji) (2.6)

21

−ϑ

t
(f)
j

t −→

Figure 2.6: The change in the potential of neuron j given a spike is given by η(t−t
(f)
j). At

time t
(f)
j neuron j fires a spike, shown in the figure with the dashed vertical

line. Immediately after the spike the potential of postsynaptic neuron j drops
to −ϑ and then slowly recovers, followed by a long decay until the spike has
no influence anymore.

Equations 2.1 and 2.6 define the Spike Response Model and together with equations
2.3 and 2.5 they fully describe the behavior of one single neuron. A simple example
illustrating the process is shown in figure 2.7, where the spikes of two neurons cause a
third neuron two fire.

2.4 Network architecture

Like with conventional neurons various networks can be built with spiking neurons,
depending on its purpose [35, 43, 12]. Our goal is to build a classifier and for this a
layered feedforward architecture proved to be successful for conventional neurons [2].

A layered feedforward network consists of layers of neurons which only form connections
with neurons in subsequent layers, see figure 2.8. The first layer, called the input-
layer, acts as the input of the network. Actually this layer does not consist of neurons,
because there is no real processing involved: the so called input-neurons are forced to
have a certain output. In our case of spiking neurons the input-neurons fire a predefined
spike-train. The last layer is the output-layer. The spike-trains of these neurons form the
output of the network. In between the input- and output-layer there could be any number
of hidden layers. When learning the neural network these hidden layers form their own
representation of the input that is sometimes necessary for learning a classification task.

The set of connections between two layers of neurons can also be seen as a layer. Because
these layers of connections are a very important concept in neural network theory, it is
the convention to denote layered network by the number of these layers and not by the

22

∑

∑

∑

t →

e

t →

f

t →

ϑ

a

t →

b

t →

t →

c d

t →

g

Figure 2.7: A graphical example explaining the workings of a spiking neuron. a, b: the
two top neurons fire spikes, the left fires once, the right fires two times. c,
d: the synapses delay and weigh the spikes and then transform them into
spike responses using the ε-function; the left synapse has a larger delay then
the right synapse, but a smaller weight. e: the incoming spike responses are
summed to give the neurons potential. f: the potential is thresholded and
because the potential crosses the threshold, the potential drops due to the
refractoriness. g: the output of the neuron is a spike at the time the potential
reached the threshold.

23

Input-

Layer

Hidden-

Layer

Output-

Layer

Input Pattern Output Pattern

Figure 2.8: A feedforward network with one hidden layer. The neurons of the input-layer
are forced to fire a certain spike-pattern shown with the dashed arrows. The
spike-trains of the output-neurons form the output of the network.

number of layers of neurons [2]. For example, a network with one hidden-layers is called
a 2-layered network.

We use multiple synapses per connection, as introduced in [17] and used in [43] and
[5]. Every synapse has an adjustable weight and a different delay, see figure 2.9. These
different delays provide a way for the presynaptic neuron to influence the postsynaptic
neuron on a longer time-scale than the time-interval of the spike-response and on a more
detailed level.

All connections consist of a fixed set of l delays: D = dk; 1 ≤ k ≤ l, so we can drop the
indication of the presynaptic and postsynaptic neurons. The corresponding weight is
denoted with wk

ji. Equation 2.6 can thus be rewritten as:

uj(t) =
∑

t
(f)
j

∈Fj

η(t − t
(f)
j) +

∑

i∈Γj

∑

t
(g)
i

∈Fi

l
∑

k=1

wk
jiε(t − t

(g)
i − dk) (2.7)

With the right learning algorithm this network should be able to learn pairs of input- and
output-patterns; it would be trained to produce the output belonging to a given input.
Using spiking neurons the input- and output-patterns consist of a set of spike-trains, see

24

j1 jv jn

i1 iu im
i

j

Figure 2.9: One connection between two neurons consists of multiple delayed synapses
which all have an adjustable weight.

also figure 2.8. The input-pattern is fed to the input-layer and the network processes
this to give a certain output-pattern. The learning algorithm then has to change the
weights of the synapses in such a manner to minimize the difference between the given
output and the desired output-pattern. The network could also be learned by changing
the delay-times of the synapses [36]. As this is still a bit unusual in neural network
theory, we chose to keep them fixed.

2.5 Spike coding

In this section we will describe the methods for encoding an analog signal into spike-
trains.

Spiking neural networks use sets of spike-trains as their input and output, but usually
we want to do computations on analog data or streams of data. In order to use SNNs
we somehow have to encode this analog data in spike-trains in order to feed them to
the network. A lot of research has been done to figure out what kind of coding bio-
logical neurons use to represent analog data [47, 1, 16, 52]. Very few of the proposed
representations can be used in the network architecture as the one we presented. We
will describe these, as well as some other representations that originate from the field of
computer science.

Maybe the simplest way to convert an analog value to spike code is to use only one spike
with its firing-time proportional to the analog value. This is called time-to-first-spike
coding [16] and is used in a lot of studies [31, 43, 4, 59]. The drawback of this coding is
that every spiking neuron fires only once and thus limits its capabilities.

A stream of analog values can be encoded in this way by sequentially encoding one analog
value in one spike-time during a certain time-period and combining these time-periods

25

one after each other. This kind of coding is called phase coding [20, 16]. It suffers from
the same shortcomings as the time-to-first-spike coding: the expressive power of the
spike-train is limited because there is only one spike in a certain period.

Another simple way to encode a stream of analog values is by thresholding it, reducing
it to a stream of bits, that can be seen as a spike-train [47]. The thresholding causes a
large loss of data, reducing every value to a bit, and thereby a lot of useful information
could be thrown away. However this dimension-reduction could also be an advantage,
because it results in compact spike-trains. The thresholding can also be done with
spiking neurons, producing more ”natural” spike-trains.

Data from one variable can also be scattered over more than one neuron. This is generally
called population coding [32], but there are various methods to do this. In [4] for example
an analog value is transformed into a couple of spike-times each belonging to a different
neuron using receptive fields. Every neuron overlaps the analog variable with a Gaussian-
kernel, which has a specific mean and variance. The hight of the Gaussian-kernel at the
value of the analog variable determines the firing-time of the neuron. [44, 4]

When coding a sound-signal it is customary to code the different frequency-responses
with different neurons [23]. In [55] the fast Fourier transform was used to convert sound
samples into 128 different frequency-signals. Every frequency-signal is then thresholded
using a spiking neuron to produce a spike-train.

It is difficult to say which method is good and which is not, but some seem more suited
for certain applications then others. If only a couple of values should be coded and these
values have a high information density, then the receptive field method is probably a
good choose, because it distributes the information over a pool of neurons. If however
the input consists of thousands of streams of data like a video sample, it is better to
threshold the values in order to reduce the number of neurons and spikes.

2.6 Applications using Spiking Neural Networks

In this section we will give an overview of the aims of studies in SNN research and will
briefly describe the achievements of some of these studies.

The research field of spiking neural networks is comparable with that of traditional
sigmoidal neural networks and can be divided in the same sub-goals [51]:

• Auto-associator. The network is fed with a training-set of patterns, which it is
supposed to store by tuning its free parameters. When presented with a new
pattern it should reproduce the most similar training-pattern.

• Pattern-association. The network is fed with a training-set of pairs of patterns
and the network should learn the generalized mapping between the input- and
output-patterns. When presented with a new input-pattern it should produce an
output-pattern that is consistent with this mapping.

26

• Classification. This can be seen as sub-task of the pattern-associator; the required
output-pattern consists of the predefined category the input-pattern belongs to.

• Clustering. For this task the classification of the training-patterns is not known
a priori, but the network should discover certain salient features with which it is
able to divide the data in different classes.

Because of the dynamic character of SNNs, much of the focus in research points to-
wards computations with temporal patterns, such as speech-recognition and time-series-
prediction. Also this dynamic feature can be used to solve the notorious binding-problem:
the encoding and detection of conjunctions of features [4].

In [5] a multi-layer network architecture, as described in section 2.4, with an accom-
panying learning-rule called SpikeProp is used, which can classify sets of static data.
Experiments on real-world data-sets produce good results, comparable with those of the
conventional backpropagation algorithms. A classification method for dynamic data is
presented in [54]. The specific task in this study is predicting the value of a certain
dynamic set of variables given the history of this variable. However the method could
also be used for general classification-tasks on temporal patterns.

There are also a lot of studies trying to develop unsupervised learning rules that can
be used to cluster data using SNNs. In [43] an algorithm is introduced that can cluster
static and dynamic data. An example of clustering static data is described in [6], where
an image is sub-divided in areas with the same color. An example of clustering temporal
patterns is given in [55], where a network learns to discriminate two different audio-
samples.

In addition to feedforward architectures there are studies concerning totally connected
SNNs in analogue with the conventional Hopfield network [35, 41]. Like their conven-
tional counterpart these networks can serve as auto-associators or content-addressable
memories.

Of course it is good to see that SNNs can perform the same tasks as conventional
networks. It would be even better if they could be used for applications where other
algorithms experience difficulty. We therefore think SNNs can make a real difference in
processing temporal patterns, because of its dynamic nature.

27

28

3 Learning algorithm for one-layered SNNs

In the previous chapter we have introduced the architecture of a basic spiking neural
network that is capable of mapping sets of input spike-trains to sets of output spike-
trains. What we want to do is to make a classifier using this network, that is able to
classify temporal patterns. In order to do this we need a learning algorithm that can
change the weights of the synapses in such a way that the network can classify a certain
pattern of input spike-trains. Although there have been various studies introducing
supervised learning-rules designed for spiking neural networks [17, 50, 5], most of them
only consider spiking neurons that spike once. Some studies have proposed methods
to learn SNNs that use multiple spikes per neuron, but none of them is practical; that
is, they use awkward methods such as expanding the network with each input-spike it
receives, leading to a problem with memory-storage [54].

In this chapter we will develop such a learning-rule. In section 3.1 we will derive a
learning-rule that can tune the weights given an input-pattern and the desired output.
The parameters of the learning-rule and the network architecture that have to be set
before we can learn a specific tasks are discussed in section 3.2. The SpikeProp algo-
rithm of Bohte [5] has close resemblance with our learning-rule. In section 3.3 we will
compare the learning algorithms with each other. Finally section 3.4 will describe a
simple benchmark test to show what the learning-rule is capable of.

3.1 Derivation of the learning-rule

In this section we will formally derive a learning-rule that can determine the weights
of a spiking neural network without hidden layers so that it can successfully classify
spike-train patterns.

In order to find these weights, they are sequentially tuned to minimize a certain error-
measure. This minimization is accomplished by the gradient descent method; that is,
descending the error landscape proportionally to the derivative of the error. This kind
of parameter-optimization is an important tool in the field of learning algorithms [51, 2].

The error-measure is determined by the mismatch between the desired output of the
output layer and the actual output. So it is important to decide what kind of neural
coding the output-neurons should have.

For classification-tasks we do not need a large representational power, because the output
should only provide the class the input-pattern belongs to and the number of classes is

typically small. We choose to code this in the time of the first spike t
(1)
j , so we ignore

29

all the spikes that come later. The error of the network can then be determined by the
sum of the squared differences of the desired spike-time and actual spike-time:

Enet =
1

2

∑

j∈J

(t
(1)
j − t̂

(1)
j)2, (3.1)

where t̂
(1)
j denotes the desired first spike-time of neuron j and J denotes the output

layer.

It would be more difficult to find an adequate error-function if we would demand more
then one spike per output-neuron, because it would be difficult to determine which actual
output spike corresponds with which desired spike.

In order to minimize the network-error we should change each weight proportionally to
the derivative of the error with respect to this weight. The weight-change for a synapse
from neuron i to neuron j is thus denoted by:

∆wk
ji = −η

∂Enet

∂wk
ji

, (3.2)

where η is a small constant called the learning rate and wk
ji is the weight of the synapse

from input neuron i to output neuron j with a delay of dk. Because the weight wk
ji only

influences the spike-times of output-neuron j the chain rule can be used to expand the
second factor of (3.2) to:

∂Enet

∂wk
ji

=
∂Enet

∂t
(1)
j

∂t
(1)
j

∂wk
ji

. (3.3)

The first factor, that expresses how the error of the network changes given the first spike
of output-neuron j is easy to compute:

∂Enet

∂t
(1)
j

= t
(1)
j − t̂

(1)
j . (3.4)

Calculating the second factor of (3.3), that expresses the change in spike-time given a
change of the weight, is more difficult, because there is no formula expressing the firing-
time in the weight. In order to calculate it we have to realize that neuron j spiked at

time t
(1)
j because the potential uj reached the threshold at that time (see equation (2.1)):

uj(t
(1)
j) = ϑ. (3.5)

Since the potential is constant, that is ϑ, for every t
(1)
j it holds that

duj(t
(1)
j) = 0. (3.6)

By expressing the firing-time t
(1)
j in wk

ji,

t
(1)
j = t

(1)
j (wk

ji), (3.7)

30

we can expand (3.6) to:

∂uj(t
(1)
j)

∂wk
ji

dwk
ji +

∂uj(t
(1)
j)

∂t
(1)
j

∂t
(1)
j

∂wk
ji

dwk
ji = 0. (3.8)

Dividing by dwk
ji we get:

∂uj(t
(1)
j)

∂wk
ji

+
∂uj(t

(1)
j)

∂t
(1)
j

∂t
(1)
j

∂wk
ji

= 0. (3.9)

The last factor of the second term is the expression that we want to compute, so we only
have to compute the other two terms. Remembering the formula for the potential of a
neuron,

uj(t) =
∑

t
(f)
j

∈Fj

η(t − t
(f)
j) +

∑

i∈Γj

∑

t
(g)
i

∈Fi

l
∑

k=1

wk
jiε(t − t

(g)
i − dk), (3.10)

we can easily calculate these derivatives. The first partial derivative of the potential
with respect to the weight is given by:

∂uj(t
(1)
j)

∂wk
ji

=
∑

t
(g)
i

∈Fi

ε(t
(1)
j − t

(g)
i − dk). (3.11)

For the partial derivative with respect to the first spike-time we do not have to worry
about the refractoriness-term, because η(s) = 0 for s ≤ 0 reflecting the fact that later
spikes do not influence earlier spikes.

∂uj(t
(1)
j)

∂t
(1)
j

=
∑

i,k

∑

t
(g)
i

∈Fi

wk
jiε

′(t
(1)
j − t

(g)
i − dk). (3.12)

Filling in equations (3.11) and (3.12) in (3.9) we can calculate
∂t

(1)
j

∂wk
ji

:

∂t
(1)
j

∂wk
ji

=
−

∑

t
(g)
i

∈Fi
ε(t

(1)
j − t

(g)
i − dk)

∑

i,k

∑

t
(g)
i

∈Fi
wk

jiε
′(t

(1)
j − t

(g)
i − dk)

(3.13)

Combining the results we can express the formula for the weight-change (3.2) in a con-
crete way:

∆wk
ji = −η

−
∑

t
(g)
i

∈Fi
ε(t

(1)
j − t

(g)
i − dk)

∑

i,k

∑

t
(g)
i

∈Fi
wk

jiε
′(t

(1)
j − t

(g)
i − dk)

(t
(1)
j − t̂

(1)
j). (3.14)

31

u

ϑ

t
(f)
1 t

(f)
2

t −→

Figure 3.1: A small weight change can cause a jump in the firing-time of the first spike.
The two potentials in this graph are almost the same. Except that the dashed
potential is somewhat lower in the first part caused by a lower weight and

does not reach the threshold until t
(f)
2 . The solid potential however is a bit

higher in the first part due to a small positive weight-change and reaches the

threshold a lot earlier at t
(f)
1 .

With this learning-rule we should find a minimum in the error-landscape. We must
however be aware that this landscape is not continuous. A small change in a weight can
cause a neurons potential to reach the threshold, where it did not reach it before the
weight-change; see figure 3.1. If the resulting spike is the first spike, the error jumps up
or down depending on the desired spike-time. So the partial derivative of the error with
respect to this weight could be very large.

This can also be seen by looking closely at equation 3.14. The denominator of the fraction
consists of the gradient of the potential of the neuron during the spike. If this gradient
is very small, meaning that the threshold was barely reached by the potential, then
the weight-change becomes very large. Because of the discretization during simulation
this could even lead to a negative potential gradient, when the potential is immediately
decreasing after it reached the threshold. This would lead to a very large weight-change
in the wrong direction.

To circumvent this problem we put a lower bound on the gradient of the potential while
calculating the weight-change. If the gradient turns out to be less then a certain value,
the weight-change is calculated using the bound-value instead of the real gradient. Such
a bound could slow down the gradient descent method, but the difference would be
minimal if the value of the bound is low. In all our simulations we used a bound of 0.1.

The algorithm for tuning the weights for one pattern is summarized in Algorithm 1. To
learn a set of patterns this procedure must be repeated several times for each pattern.

Iteratively tuning the weights using this learning algorithm would bring us to a mini-
mum in the error-landscape. The minimum would most likely not be a global minimum,
because the gradient descent method does not converge to the optimal parameter set-
tings. This should however not be considered as a drawback, because finding parameters
that would classify all the training-patterns correct, would in general mean that we have

32

Algorithm 1 Learning algorithm for a 1-layered SNN

for all output-neurons j in J do

compute partial derivative of network with respect to j according to (3.4)
compute gradient of potential (the denominator of 3.13)
if gradient < 0.1 then

gradient ← 0.1
end if

for all input-neurons i in I do

for all weights wk
ji of the connections form i to j do

compute partial derivative of network with respect to wk
ji using the numerator

of (3.13) and the gradient
compute weight-change ∆wk

ji using (3.2) and (3.3)
end for

end for

end for

for all weights wk
ji do

wk
ji ← wk

ji + ∆wk
ji

end for

overfitted the training data [2].

3.2 Parameter settings

Before training a network we have to set the parameters used by our learning procedure
with sensible values. For some of these we can just choose a value that seems appropriate,
without tuning them to improve the networks performance. For other parameters it is
difficult to come up with a good value, so we have to make a rough estimation using
some preliminary tests. We will discuss the parameters one by one and give empirical
formulas where possible.

• The number of delays per connection. There are a number of synapses with dif-
ferent delays dk with k ∈ 1, 2, . . . , l between every input- and output-neuron (as
described in section 2.4). The delay-interval (dl−d1) should strongly depend on the
duration of the input-pattern and the desired output-spikes. The smallest delay
should be the difference between the time of the last input-spike and the earliest
output-spike and the largest delay should be the difference between the time of
the earliest input-spike and the last output-spike. By doing this, every input-spike
can be delayed in such a degree that it can influence the desired early and late
output-spikes. In all the experiments we chose to distribute the delays 1 ms apart
from each other, as in [5, 43], so that dk = k ms with k ∈ {1, 2, . . . , l}.

• Weight-initialization. Before training begins the weights should be initialized to
some random value. If the weights are too low the output-neurons will not fire

33

and there is no way to calculate the error with respect to the weights. So it is
important to make a good estimate. We chose to pick these initial weight-values
randomly from a uniform distribution. The average of this distribution depends on
a number of things including the Fan-In of the output-neurons, which is the number
of synapses leading to one output-neuron. In our architecture this is the product
of the number of input-neurons I and the number of delay lines per connection k:
Fan-In = Ik. The formula for a good estimation of the average weight-value is
given by:

E(w) =
ϑ

Fan-In N̄i

∫

ε(s) ds
, (3.15)

where N̄i denotes the average number of input-spikes per input-neuron and
∫

ε(s) ds

compounds to τm − τs.

We will take the width of the distribution to be somewhat bigger then the average,
so that some weights will be initialized with negative values.

• The learning-rate η. It is difficult to pick a suitable value for the learning-rate η,
introduced in equation (3.2). If η is too high the algorithm will most likely not
converge, but will change the weights with such big steps that it will overshoot the
minimum and start oscillating around it. If it is too low the algorithm will change
the weights too slow and thus it will take a long time before the network-error will
reach a minimum. Like the initial weight-values, η also depends on the Fan-In of
the output-neurons. A rough estimation is given by:

η =
ϑ

Fan-In N̄i

∫

ε(s) ds
0.01 (3.16)

• The stopping-criteria. When dealing with real-world data there is always presence
of noise. So it would be very unlikely that the algorithm finds weight-values that
reduces the network-error to zero. This would also be infeasible, because it would
indicate that we have overfitted the data. It is better to stop training when the
error drops beneath a certain threshold. The order of the error, and thus the height
of the threshold, depends on a number of things: the number of training-patterns,
the number of output-neurons and the coding-scheme of the output:

ErrorThreshold =
PJVar(t

(1)
j)

3
, (3.17)

where P denotes the number of training-patterns, J the number of output-neurons

and Var(t
(1)
j) the variance of the desired output-spikes.

The given formulas should be used as a guide to find good parameter values, but are by
no means optimal.

34

3.3 Related work

In this section we compare our learning-rule with SpikeProp, a learning-rule derived by
Bohte in [5]. It must be noted that SpikeProp is meant for a network architecture with
hidden layers. We shall generalize our learning-rule for these networks in chapter 4, but
we can already compare the basic features.

The SpikeProp algorithm was designed for classifying spike-times using the same network-
architecture. As in our approach, a gradient descent method was used for finding a
learning-rule. Thus the learning-rules are basically the same, although the mathemati-
cal derivation is different.

The main difference is that SpikeProp is only capable of learning one spike per input-
neuron, while our rule is intended for input-neurons that fire more than once. The
patterns that SpikeProp could classify are sets of real values, coded in the spike-time
of each input-neuron. The domain of classification tasks is thus the same as that for
conventional neural networks using conventional backpropagation.

Our aim is at developing a learning algorithm that can classify temporal patterns. Of
course temporal patterns can be coded as a set of real values; for example in [34] sound-
fragments of spoken words coded in sets of 40 individual spike-times are classified using a
spiking neural network. The conversion of dynamic data to static values does not seem
to be appropriate. The strength of spiking neural networks is that they can process
dynamic data without encoding it in static values.

The experiments conducted in [5] indicated that the time-constants of the spike-response
function ε(s), see equation (2.3) and (2.4), should be large, otherwise the SpikeProp
learning algorithm will not converge. To be more specific, the rising part of the spike-
response function should take longer then the time interval in which the input-patterns
are encoded, see figure 3.2. In our algorithm we use a ε(s)-function with its top at
s = 4 ∗ ln(2) ≈ 2.8 ms, which is much smaller than the input time-interval. Nevertheless
we did not experience any problem. We suspect it has something to do with the fact
that if the gradient of the potential is close to zero while crossing the threshold, the
weight-change becomes very large, as explained in section 3.1. In the case of very large
time-constants this effect does not occur because the spike-response function only rises.
Another solution is discarding very small gradient values when computing the weight-
change, as we did.

The SpikeProp algorithm was tested on a number of real-world benchmark tests that are
frequently used in the field of static pattern recognition. The results are comparable with
those of conventional backpropagation networks, although the computational costs do
differ. Despite the fact that SpikeProp uses less training-cycles, it needs more CPU-time,
because each connection consists of a number of synapses that need to be tuned.

35

t −→

u

Figure 3.2: The effect of varying the time-constants of the spike-response-function ε(s) on
the potential-change due to two incoming spikes. The potential of a neuron
with small time-constants, represented with a dashed line, clearly reflects
that the incoming spikes only have a temporal effect and this effect is highly
non-linear. However, the solid line that reflects the potential with large time-
constants has a long during effect on the potential and the potential increases
almost linearly with time.

3.4 Simple benchmark problem

Before doing experiments on real world problems, we will first test the algorithm on
artificially generated data. The network has to learn to classify different patterns and will
be evaluated on generalization and robustness. To produce random input-patterns we
use homogeneous Poisson processes. Because Poisson processes simulate the occurrences
of rare random events in time, like spikes in biological neurons, they are very suitable
for simulating spike-trains [47, 19] and are used in a lot of SNN research [21, 43, 42].

3.4.1 Task description

The task consists of learning to classify a set of input-patterns in one of 4 categories.
We first generate one random input-pattern for each of the 4 categories. Because we
want to test the robustness of the learning-algorithm, we make 10 noisy variants of these
patterns to present to the network. The resulting 40 input-patterns are then split to
produce a training-set and a test-set in order to evaluate the generalization capabilities
of the algorithm.

The spiking neural network has an input-layer of 10 neurons, so the input-patterns are
composed of 10 independent random spike-trains, one for each input-neuron (see figure
3.3).

For the spike-train a Poisson process of 16 milliseconds is used with a constant rate of
0.2 spikes per millisecond:

S = {t|x[t] ≤ 0.2}, (3.18)

where x[t] is a sequence of random numbers uniformly distributed between 0 and 1 (see
[19] for a detailed description of simulating spike-trains with Poisson processes). The

36

Figure 3.3: The Poisson spike-train benchmark. An input-pattern consists of a set of 10
Poisson spike-trains that are fed to the 10 input-neurons. The desired output
is an early spike for that output-neuron representing the right classification
of the input-pattern and a late spike for all other output-neurons. In this
case the input-pattern belongs to the first class.

resulting spike-train S thus consists of on average 3.2 spikes with independent firing
times.

Noisy versions of these spike-trains are made by shifting each spike by a random amount
taken from a normal distribution with a standard deviation of 4.0 milliseconds and zero
mean.

The output of the network is represented by 4 output-neurons, one for each class. In
the training procedure we desire that the output-neuron that represents the class of
the input-pattern fires an early spike, t̂ = 17, while all other output-neurons should
fire a late spike, t̂ = 22 (also see figure 3.3). During the testing-procedure we do not
evaluate the specific firing-times of the output-neurons. We will only look at the order in
which the neurons fired. The first output-neuron that fires a spike wins, so the networks
classification is the class to which that neuron belongs.

3.4.2 Results

The Poisson-benchmark was tested 10 times using the network architecture depicted in
figure 3.3. We used l = 20 different delays per connection with delay-times of 1 ms,
2 ms, . . ., 20 ms. The weights were randomly initialized between [−0.01, 0.1] and the
learning rate η was set to 10−4. Training was stopped when the sum squared error
became smaller then 100 (ms2), an average of 1.25 squared error with respect to every

37

output-spike.

The network had no problems with the task. During the 10 tests it needed on average 14.4
cycles with a variance of 0.68 to learn the training-set before the stopping-criterion was
met. During all 10 experiments the network successfully classified the test-set, without
making a single misclassification. So although there are a lot of free parameters that
need to be tuned (10 input-neurons x 4 output-neurons x 20 synapses = 800 weights)
and thus there is a high change of overfitting [2], the algorithm did generalize well.

The success on this artificially generated benchmark is of course very hope-giving. Nev-
ertheless we must keep in mind that the Poisson spike-trains are ideal spike-trains for our
algorithm. The spikes in one spike-train are completely independent of each other, so
the information in one spike-train is nicely distributed over each individual spike-time.
The algorithm uses this fact by weighing the effect of every input-spike on the error
with the same amount. In real world problems it is very difficult to encode the input
information in such a way that the firing-times are independent of each other, so the
spikes of the input-neurons will most likely be highly correlated [47].

38

4 Multi-layered networks

In the previous chapters we developed a learning algorithm and showed that it can learn
to classify temporal data. The algorithm can only learn spiking neural networks with
one layer of adaptable weights. It is arguable that one-layered spiking neural networks
can learn all possible mappings from input to output. In this chapter we extend the
learning algorithm to learn networks with more layers.

Section 4.1 explains why we need more layers of adaptable weights to classify certain
pattern-sets. In section 4.2 we will extend our learning-rule for network architectures
with more layers. In section 4.3 the new learning algorithm is tested on classification
tasks that could not be learned with our previous learning algorithm.

4.1 Necessity of more layers

This section explains why the learning algorithm using a one-layered SNN is insufficient
for learning all possible input-output mappings. The problem is that a one-layered
SNN may not be able to represent all possible mappings. We will first review the little
information that is already known about the representability of a one-layered network.
We will expand this knowledge by investigating a specific mapping called the Exclusive-
OR function. Then it will be shown empirically that the learning algorithm has difficulty
learning this specific function and other more complicated functions.

4.1.1 Background

The computational power of a networks of spiking neurons is, as yet, poorly under-
stood. It is known however that a spiking neuron using spike-time coding can simulate
a conventional sigmoidal neuron. So SNNs have at least the same power as sigmoidal
neural networks [30]. It is also known that conventional neural networks with one layer
of adaptable weights can only classify input-patterns that are linearly separable [2]. Lin-
early separable means that hyperplanes can be put in the input-space that separates
patterns of different classes, see figure 4.1(a). So it follows that we can build a linear
classifier using a one-layered network of spiking neurons. It is easy to see that if the
number of input-patterns is smaller than the number of dimensions of the input-space,
then the input-patterns are linearly separable [2]. When classifying video-data using
pixel-values, for example in the lipreading-task in chapter 5, this will certainly be the
case. However, we must be careful: although a pattern-set with a high dimensional

39

i1

i2

(a)

i1

i2

(b)

Figure 4.1: Input-patterns of two categories (+ and -) in an input-space of two dimen-
sions R2. (a) A set of patterns that is linear separable. The dashed line
shows a possible separation. (b) A very simple pattern-set, that is not lin-
early separable, called the Exclusive-OR problem. It is not possible to draw
a line that separates the two categories.

input-space usually is linearly separable, the best generalization of the separation could
be nonlinear. Besides that, there are other linear classifiers that work very efficient, so
it is important to construct a system that can do more.

It turns out that spiking neurons can do more. In [30] it is proven that there is a function
called element distinctness that can be computed with just one spiking neuron, but
needs a hidden layer when computed with sigmoidal neurons. The element distinctness
function EDn, that checks if some of its n inputs is the same, is defined by:

EDn(s1, . . . , sn) =











1, if si = sj for some i 6= j

0, if |si − sj | ≥ 1 for all i, j with i 6= j

arbitrary, else.
(4.1)

The input-variables s1, . . . , sn are encoded in the firing-times of the incoming spikes of
the neuron and the binary output is encoded by the firing/non-firing of the neuron. For
a complete analysis of the spiking and sigmoidal neurons computing this function see
[31] or [29].

It is clear now that for certain non-linear classification tasks an SNN of only one layer is
needed, whereas conventional sigmoidal neural networks need an additional hidden layer
of neurons.

4.1.2 The Exclusive-OR problem

The most famous non-linear function in the field of neural networks is the Exclusive-
OR problem (XOR) which maps two boolean input-variables two one boolean output-
variable, see table 4.1 and figure 4.1(b) [2, 7]. Although this problem is purely theoretical,

40

Input 1 Input 2 Output

false false → false
false true → true
true false → true
true true → false

Table 4.1: The XOR-function, which maps two boolean values to one boolean value.

it is desirable for a general pattern-recognition technique to have the ability to solve it,
because most real-world tasks imply this problem. Maybe the most comprehensible
example of such is real-world task is the detection of a wink; a person is said to wink
if it closes one and only one eye. So a ”wink-detector” should react to a face that has
only the left or only the right eye closed, but not if both are closed or both are open.

The seemingly simple XOR-function can not be computed by a one-layer network of
sigmoidal neurons because of its non-linearity and thereby caused a great deal of dis-
illusion in neural network research in the 70s. It is therefore interesting to question if
a one-layered SNN can solve this problem. In the following we will show that this can
indeed be done although the solution is not very neat.

First of all it is easy to see that the XOR-function is actually a special case of the element
distinctness-function. For example, the boolean input-variables true and false can be
coded by an input-spike at time t = 0 and t = 6 respectively. The output false is then
coded by a spike, while the output true is coded by the absence of a spike. Given that a
spiking neuron can solve the element distinctness-function, leads to the conclusion that
it can also solve the XOR-function.

This solution however is not very elegant. The problem is that the coding of the output
is not the same as the coding of the input. The input-variable is coded in the spike-time
while the output is coded as firing/non-firing. This causes trouble if we want to use this
output as the input for another spiking neuron. We could force the neuron to produce an
output-spike at a much later time-step by introducing another input-spike that causes
the potential of the neuron to rise above the threshold a while after the input-range,
for example at time t = 20. By doing this the output is also coded in the spike-time of
the neuron, namely: a spike before t = 20 is interpreted as false and a spike at t = 20
as true. This only partially solves the problem because the time-scale of the input and
the output are different. Another method, described in [28], is to feed the output of the
neuron to a so-called synchronizing module, which is composed of spiking neurons, that
translates the firing/non-firing code into the spike-time coding on the right time-scale.
Unfortunately this would change our one spiking neuron into a multi-layer network, so
we can not use it.

A better encoding of the XOR-function would be to code both the input and the output
in time-to-first-spike coding with equal time-scale for input and output. Such a coding
is given by Bohte in [5], see table 4.2. Notice that a third input-neuron, a so-called

41

Input 1 Input 2 Bias Output

0 0 0 → 16
0 6 0 → 10
6 0 0 → 10
6 6 0 → 16

Table 4.2: Exclusive-OR encoded with one spike per input neuron as in [5]. Each row
shows one input-output mapping. The input consists of 3 spike-times, one for
each of the 3 input-neurons (Input1, Input2 and Bias) and the output consists
of one early or late spike-time representing the class of the input.

Input Output

0 5 10 → 20
0 5 → 15
0 10 → 15
0 → 20

Table 4.3: Exclusive-OR encoded in a single spike-train. The output is encoded in the
same way as in table 4.2, but the input is encoded using 1, 2 or 3 input-spikes
for one single input-neuron.

bias-neuron, should be used that always fires at t = 0, to specify the starting time of
the problem. Of course there are more possible ways of coding the problem in precisely
timed spike. In table 4.3, for example, an encoding is shown that represents the problem
in only one spiking-train, using the fact that spiking neurons can fire more than once.
We focus on the first encoding, because it is considered to be unsolvable for a one-layered
SNN [5].

We will show that a one-layered SNN in fact can solve the XOR-problem as given in
table 4.2 with an arbitrarily small error. What follows is a description of a specific
network-architecture and an indication of the values for the delays and weights. Specific
numerical values for the delays and weights are shown in table 4.4. We must point out
that there are other values which also lead to a solution for the XOR-problem.

The architecture of the network is partially fixed by the problem: there are 3 input-
neurons and 1 output-neuron. The number of synapses that run from each input-neuron
to the output-neurons can be chosen. It turns out that 7 synapses in total are enough:
three from the bias-neuron leading to the output-neuron and two from both other input-
neurons, see figure 4.2 for the naming-convention. First we will set the delay and weight
of a synapse from the bias-neuron, in such a manner that the output-neuron will always
fire at t = 16, no matter what the spike-time of the other input-neurons are. The
other two synapses from the bias must cause the potential of the output neuron to
peak just under the threshold at t = 10, so only little extra potential rise is needed to
produce an early output-spike. Now all we have to do is ensure that the output-neuron’s

42

w2
2, d2

2

w1
2, d1

2

w2
1, d2

1

w1
1, d1

1

w2
B, d2

B

w3
B, d3

B

w1
B, d1

B

1

2

B

j

Figure 4.2: An SNN architecture that can solve the XOR-problem. The output-neuron
has two synapses from input-neuron 1 and 2 and three from the bias input-
neuron B. The weights w and the delays d are specified using the input-
neuron as subscript and the delay-number as superscript.

potential is not or negatively changed around t = 10 when the first two input-neurons
spike simultaneously and positively otherwise. By choosing the same delays for both
neurons (d1

1 = d1
2, d2

1 = d2
2) but mirroring the weight-values (w1

1 = −w1
2, w2

1 = −w2
2),

the net influence on the potential will be zero if the input-neurons spike simultaneously.
It is impossible to cause an output-spike at exactly t = 10, when the input-neurons fire
dissimilar. So it be approximated, by firing slightly before t = 10 for the first dissimilar
pattern and slightly after for the other dissimilar pattern. This is done by choosing
the weights and delays of the first neuron in such a manner that the influence on the
potential after a delay of t = 4 is equal to that of t = 10, but at t = 4 the potential is
rising while the potential is descending at t = 10. Because the weights from the other
neuron are the same but negative, the influence of this neuron is the other way around:
descending at a delay of t = 4 and rising at t = 10. If the first neuron fires at t = 6
and the second at t = 0 then both neurons produce a rising influence at t = 10 of the
potential of the output-neuron, so that the potential is positively influenced just after
t = 10. If on the other hand the first input-neuron fires an early spike while the second
fires a late spike, then the output-neuron is positively influenced before t = 10. In both
cases the potential of the output-neuron reaches the threshold around t = 10 and fires a
spike.

Figure 4.3 shows the potential change of the output-neuron caused by the input-patterns.
As can be seen the potential just stays under the threshold at t = 10 for the input-
patterns that are supposed to let the neuron fire at t = 16 and it barely crosses the
threshold at t = 10 for the other patterns. This is called a hair-trigger situation and
should be avoided because the network will not be robust against noise [30]. If, for
example, the two input-neurons do not fire at precisely the same time then the net
influence on the potential of the output-neuron will not be zero and could result in an
early output-spike.

43

(a) Input 1 and input 2 fire early

 0.999

 1.001

 1

 10 9.99 10.01

−2

−1

 0

 1

 2

 3

 0 5 10 15 20 25 30 35 40

Summed

Neuron 2
Bias

Neuron 1

(b) Input 1 fires early, input 2 late.

 1

 10 9.99 10.01
 0.999

 1.001

−2

−1

 0

 1

 2

 3

 0 5 10 15 20 25 30 35 40

Summed
Neuron 1
Neuron 2

Bias

(c) Input 1 fires late, input 2 early.

 1

 10 9.99 10.01
 0.999

 1.001

−2

−1

 0

 1

 2

 3

 0 5 10

Summed
Neuron 1
Neuron 2

Bias

 40 20 25 30 15 35

(d) Input 1 and input 2 fire late.

 1

 10 9.99 10.01
 0.999

 1.001

−2

−1

 0

 1

 2

 3

 0 5 10 15 20 25 30 35 40

Summed
Neuron 1
Neuron 2

Bias

Figure 4.3: The influence of the 3 input-neurons on the potential-change of the output-
neuron for all four XOR-patterns using the weight-values given in table 4.4.
The solid line stands for the sum of the three contributions making up the
potential of the output-neuron. The influence of the bias-neuron is the same
for every pattern, because it always fires at t = 0. However, the influence
of the other two neuron is shifted to the right if they fire a late spike. The
dashed vertical line shows when the potential crosses the threshold. From
the inset, which zooms in on the threshold at t = 10, it is clear that there is
a hair-trigger situation.

44

Delay Value Weight Value

d1
1 1 w1

1 1.906419
d2

1 5 w2
1 1

d1
2 1 w1

2 −1.906419
d2

2 5 w2
2 −1

d1
B 8 w1

B 5.8038
d2

B 9 w2
B −2.6

d3
B 14 w3

B 3.59

Table 4.4: A set of delay and accompanying weight-values for the network-architecture
depicted in figure 4.2, with which the XOR-problem can be solved.

In table 4.4 a set of delays with their weights is shown that computes the XOR-function
with a sum squared error of 10−4. This error could be made arbitrarily small by further
fine-tuning of the weights and using smaller time-steps for the simulation. This also
worsens the effect of the hair-triggering; that is, the difference between the potential and
the threshold at t = 10 becomes smaller.

A spiking neural network can thus solve the classical XOR-problem with just one layer
of adaptable weights with an arbitrarily small error. It can however only be done using
a hair-trigger situation and this is not very feasible. It means that we can not use it on
real-world problems that involve computing the XOR-function, because then there will
be noise in the data.

4.1.3 Learning the XOR-function with one layer

It is important to know what kind of mappings SNNs can represent, but it is at least
as important to understand what mappings the SNN is able to learn. Investigating the
learnability of one spiking neuron analytically is very difficult [36], so hardly anything is
known about the learnability of a network of spiking neurons. Therefore, we investigate
the learnability experimentally, by trying to learn the XOR-problem using our learning-
rule.

A network of 3 input-neurons each connected by 16 delay-lines with 1 output-neuron
was trained on the data-set as given in table 4.2. The weights were initialized between
−1 and 2 and a learning-rate of 10−4 was used. Over 10 trails the network reliably
learned the XOR-function within a sum squared error of 1.0 (ms2). For clarity, it must
be stated that the found weight-configurations were different than that given in the
4.1.2. To reach a solution it needed on average more than 105 training-cycles, which
is a long time, for example as compared with the 14.4 cycles used to learn the Poisson
spike-trains in section 3.4. These long learning times suggest that the algorithm has
trouble to converge because of the hair-trigger situation. To investigate if this was the
case we tested the found classifiers on test-patterns that were noisy variations of the
original training-patterns. Shifting the input-spikes by a random amount taken from a

45

normal distribution with a standard deviation of only 0.1 ms, caused the sum squared
error of the output to increase 52.1 (ms2). Clearly, the solutions that are found by the
learning-algorithm are not noise-tolerant and thus indicate a hair-trigger situation.

4.1.4 Other non-linear functions

By showing that a one-layered SNN can solve the XOR-problem, it is not proven that
it can solve all possible non-linear mappings. Although the XOR-function is a problem
with a lot of historical significance in the field of neural networks, it is by no means a
complex function.

An example of a somewhat more difficult non-linear problem is the Parity function,
which is a generalization of the XOR-function with n input-variables:

Pn(b1, . . . , bn) =

{

1, if the number of {bi|bi = 1} is odd
0, otherwise.

(4.2)

We tried to find a solution for the case of n = 3 input-variables using a one-layered SNN
and our learning algorithm with the same parameters as used for the XOR benchmark.
However, the algorithm did not converge to a solution, but got stuck in a local minima
with a sum squared error 20.

It is clear that our algorithm with a one-layered SNN has trouble learning all possible
input-output mappings, although it is not proven that this is impossible. However,
we can be sure that an SNN with more layers of adjustable weights can compute all
classifications on single spikes, since two-layered sigmoidal networks are able to model
any continuous function [2] and a sigmoidal neuron can be simulated by a spiking neuron
using a single precisely timed spike [30], This brings us to the conclusion that it is
important to generalize our learning algorithm in order to make it applicable to multi-
layered networks.

4.2 Extending the learning-rule

In this section we derive a generalized version of our learning algorithm, so it is able
to learn the weights of a spiking neural networks with more than one layer of adapt-
able weights. The derivation is comparable with that by Rumelhart, who generalized a
learning-rule for one-layered sigmoidal networks to the well-known backpropagation-rule
for multi-layered networks [38].

We focus on the case of a network with one hidden layer, but it is easy to see how this
can be extended to networks with arbitrarily many layers. Figure 4.4 shows a very basic
network to indicate the different variables that are used in a two-layered network. Both
the weights of the connections from the input-layer H leading to the hidden-layer I and
those from the hidden-layer I to the output-layer J should be tuned to minimize the

46

H I J

h i jwjiwih

t
(2)
h

t
(1)
h

t
(2)
i

t
(1)
i

t̂
(1)
j

t
(1)
j

Figure 4.4: A very simple SNN with one hidden-layer to make clear what variables are
involved.

network-error. The necessary weight-change for the weights wk
ji leading to the output-

neurons is equal to the weight-change of the one-layered network, equation (3.14). The
rule for tuning the weights wk

ih leading to hidden-neurons is derived in the same way,
using the gradient descent method:

∆wk
ih = −η

∂Enet

∂wk
ih

, (4.3)

Again the partial derivative of the network error with respect to the weight should be
calculated, in the same way as was done with the weights leading to a output-neuron,
see equation (3.3). In addition we must take into account that a hidden-neuron can fire
more than once, in contrast with the output-spikes, where only the first spike influences

the error. So the error depends on all spikes t
(g)
i of the hidden-neuron, which are a

function of the weight wk
ih:

∂Enet

∂wk
ih

=
∑

t
(g)
i

∈Fi

∂t
(g)
i

∂wk
ih

∂Enet

∂t
(g)
i

(4.4)

We will first compute the derivative of the error with respect to the spikes of the hidden-
neuron ∂Enet

∂t
(g)
i

. It depends on the derivatives of the errors with respect to all the spikes

of the neural successors it is connected with, denoted by Γi:

Γi = {j|j is postsynaptic to i}. (4.5)

So the derivative of the error with respect to the spike t
(g)
i of a hidden-neuron can be

expanded to

∂Enet

∂t
(g)
i

=
∑

j∈Γi

∂t
(1)
j

∂t
(g)
i

∂Enet

∂t
(1)
j

. (4.6)

The partial derivative ∂Enet

∂t
(1)
j

is already computed in equation (3.4), so we only need to

calculate the dependency of the first spike of an output-neuron on a spike of a hidden

neuron
∂t

(1)
j

∂t
(g)
i

. This can be done using the same method as the calculation of
∂t

(1)
j

∂wk
ji

, see

equation (3.9):

∂uj(t
(1)
j)

∂t
(g)
i

+
∂uj(t

(1)
j)

∂t
(1)
j

dt
(1)
j

dt
(g)
i

= 0. (4.7)

47

The factor
∂uj(t

(1)
j

)

∂t
(1)
j

is already computed in equation (3.12) so we only need to compute

∂uj(t
(1)
j

)

∂t
(g)
i

. Again remembering the formula for the potential,

uj(t) =
∑

t
(f)
j

∈Fj

η(t − t
(f)
j) +

∑

i∈Γj

∑

t
(g)
i

∈Fi

l
∑

k=1

wk
jiε(t − t

(g)
i − dk), (4.8)

it is easy to compute:

∂uj(t
(1)
j)

∂t
(g)
i

= −
l

∑

k=1

wk
jiε

′(t
(1)
j − t

(g)
i − dk). (4.9)

Combining (3.12) and (4.9),
∂t

(1)
j

∂t
(g)
i

can now be expressed in

∂t
(1)
j

∂t
(g)
i

=

∑

k wk
jiε

′(t
(1)
j − t

(g)
i − dk)

∑

i,k

∑

t
(f)
i

∈Fi
wk

jiε
′(t

(1)
j − t

(f)
i − dk)

. (4.10)

Filling equations (4.10) and (3.4) into equation (4.6), we get the formula to calculate
the error of the network with respect to a spike of a hidden-neuron:

∂Enet

∂t
(g)
i

=
∑

j∈Γi

∑

k wk
jiε

′(t
(1)
j − t

(g)
i − dk)

∑

i,k

∑

t
(f)
i

∈Fi
wk

jiε
′(t

(1)
j − t

(f)
i − dk)

(t
(1)
j − t̂

(1)
j). (4.11)

We also need to calculate the first term of equation (4.4), the partial derivative of the

spike of the hidden-neuron with respect to the weight leading to that neuron,
∂t

(g)
i

∂wk
ih

. The

derivation is basically the same as for the weights to the output-neurons, except that

the spike t
(g)
i does not have to be the first spike of the hidden-neuron i, so we can not

neglect the refractoriness-term. Equation (3.9) thus becomes:

∂ui(t
(g)
i)

∂wk
ih

+
∂ui(t

(g)
i)

∂t
(g)
i

dt
(g)
i

dwk
ih

+
∑

t
(f)
i

∈Fi

f<g

∂ui(t
(g)
i)

∂t
(f)
i

dt
(f)
i

dwk
ih

= 0 (4.12)

The summation reflects the dependence on the spikes that the hidden-neuron fired in
the past. The first term is calculated like in equation (3.11):

∂ui(t
(g)
i)

∂wk
ih

=
∑

t
(p)
h

∈Fh

ε(t
(g)
i − t

(p)
h − dk) (4.13)

48

The first factor of the second term is a bit more difficult than was the case with the first
spike in equation (3.12) because of the refractoriness:

∂ui(t
(g)
i)

∂t
(g)
i

=
∑

t
(f)
i

∈Fi

η′(t
(g)
i − t

(f)
i) +

∑

h,k

∑

t
(p)
h

∈Fh

wk
ihε′(t

(g)
i − t

(p)
h − dk). (4.14)

Because ε′(s) = η′(s) = 0 for s ≤ 0 we have dropped the condition f < g. We also

need to compute the derivative of the potential around spike-time t
(g)
i with respect to

an earlier spike t
(f)
i :

∂ui(t
(g)
i)

∂t
(f)
i

= −η′(t
(g)
i − t

(f)
i). (4.15)

By filling in (4.13), (4.14) and (4.15) in (4.12), we can calculate
dt

(g)
i

dwih
:

dt
(g)
i

dwk
ih

=
−

∑

t
(p)
h

∈Fh
ε(t

(g)
i − t

(p)
h − dk) +

∑

t
(f)
i

∈Fi
η′(t

(g)
i − t

(f)
i)

dt
(f)
i

dwk
ih

∑

t
(f)
i

∈Fi
η′(t

(g)
i − t

(f)
i) +

∑

h,k

∑

t
(p)
h

∈Fh
wk

ihε′(t
(g)
i − t

(p)
h − dk)

(4.16)

As can be seen this equation is recursive: the partial derivative
dt

(g)
i

dwk
ih

is expressed in all

dt
(f)
i

dwk
ih

with f < g. So first the derivative of the weight with respect to the the first spike

should be calculated, then to the second spike, and so on.

By filling in equations (4.16) and (4.11) in equation (4.4) we can calculate the network
error with respect to the hidden weight and thus we can calculate the weight-change for
the weights leading to the hidden-neurons that is needed to lower the network error.

We now have an algorithm that can tune both the weights leading to the output neurons
and those leading to the hidden neurons and is thus able to learn a two-layered SNN. It is
easy to extend the algorithm to learn networks of even more layers, using the calculated
network errors with respect to the spikes of a hidden-neuron to calculate the error with
respect to a spike of a neural predecessor.

4.3 Benchmark tests

This section describes the application of the extended learning-algorithm with a 2-layered
network on problems that are difficult or impossible to learn by networks with a single
layer. First, the previously defined Exclusive-OR problem is tested to see if a multi-
layered network has less trouble in learning it. Then we investigate if the extended
algorithm can learn the Parity-n function, which could not be learned by a one-layered
network

The network was tested on the encoding using 3 input-neurons as described in table
4.2. One hidden-layer with 5 hidden-neurons was used and l = 16 different delays for all

49

connections in the network. The weights were randomly initialized between −1.0 and
2.0 and the learning-rate η was set to 0.01. The network stopped learning when the sum
squared error became smaller then 1.0.

While testing we found the same problem as Bohte did when testing his multi-layered
network [5]. The network is not able to converge, unless we use strictly inhibitory
and excitory hidden neurons; that is, the weights connecting one hidden-neuron with
the output-neuron are all positive or all negative and should not change sign during
learning. In our tests we used 4 excitory neurons and 1 inhibitory neuron.

After on average 95 training-cycles over 10 trials the algorithm successfully learned the
XOR-problem. This number is significantly less than the 105 cycles that were needed
to learn a one-layered network. The resulting networks were then tested on the noisy
data, as with the one-layered networks, to test the stability of the solutions. The error
increased only a little to 4.2, which is much less then the 52.1 of the one-layered network.
It is save to draw the conclusion that the resulting networks do not use a hair-trigger
situation.

We also tested the more general Parity-n function with n = 3 using the same architec-
ture and parameter values as used for the XOR-problem. As opposed to the one-layer
algorithm, the two-layer algorithm did correctly learn the function. After on average
564 training-cycles the network classified the 8 patterns within the 1.0 error-threshold.

4.4 Conclusion

A one-layered SNN is very powerful, even more powerful than conventional networks with
one layer. Specifically, we have shown that a one-layered SNN can solve the classical
XOR-problem, while this was assumed to be impossible [5]. Besides the XOR-problem
however, it is not able to solve all possible non-linear functions. An SNN with multiple
layers however can represent all possible functions. Therefore we have extended the
learning-rule so that it is applicable to networks with more layers. We have shown that
the extended learning-algorithm can learn SNNs to perform non-linear classification tasks
on sets of spike-trains. In addition it can solve the XOR-problem with less computations
than using a one-layered network.

50

5 Lipreading benchmark

In this chapter we apply our learning architecture to the problem of automated lipread-
ing. The field of lipreading, or speechreading, is concerned with the difficult task of
converting a video signal of a speaking person to written text. In order to successfully
accomplish this task it is clear that a recognition system is needed that can cope with
spatio-temporal patterns, such as a spiking neural network.

In section 5.1 we will briefly review the field of automated lipreading. Section 5.2 de-
scribes the general architecture of the classification system and gives a description of the
specific lipreading task it will be tested on. In section 5.3 we report the results of the
conducted experiments. And finally, in section 5.4 we make some concluding remarks.

5.1 Introduction lipreading

Human speech does not only use an acoustical signal but also a visual signal in the
form of lip movement. The information carried by the visual signal complements the
information carried by the acoustical signal [10, 11, 39]. So speech recognition can be
greatly improved by not only processing the audio signal but also taking the visual signal
into account. Research shows that combined audio-visual speech recognition systems
perform better then audio-only recognizers, especially in a noisy environment [11, 10,
39, 60].

The same recognition techniques that are used to cope with the temporal aspect of
audio recognition are also used for lipreading systems. So it is not surprising that
most lipreading systems use Hidden Markov Models (HMM) to recognize the temporal
correlations of the lipreading video [9, 10, 56]. Because HMMs can only use a limited set
of input variables [46], quite a lot of preprocessing is needed to code each frame of the
video in a few input values. Usually prior knowledge of the speechreading problem is
incorporated in this preprocessing stage. For example, various studies use parametrized
models that are optimized to describe the form of the lips in only a few variables [27, 56].
And some even build feature-extraction methods to find out whether the tong is visible
or not [62, 45].

There are also lipreading systems using neural networks. These systems need consid-
erable less preprocessing because the number of input variables can be much larger.
The most notable neural network architecture used is the Time Delayed Neural Net-
work (TDNN) [39, 8, 56], which is a special case of a sigmoidal feedforward network
using standard backpropagation. And some studies use recurrent neural networks like

51

(a)

(b)

Figure 5.1: Two example image-sequences of the Tulips database. (a) A video of 6
frames showing someone pronouncing ”one”. (b) A video of 9 frames showing
someone pronouncing ”two”.

the Elman Hierarchical Neural Network [60]. The neural networks are usually fed with
pixel-based input, meaning that a feature represents the value of one or a few pixels in
a video-frame, and avoid using explicit features as with HMMs. The idea behind this is
that the algorithm should find its own internal features to learn a lipreading task [39].

We want to investigate the capability of spiking neural networks in lipreading. We will
also try to limit the preprocessing as much as possible and use pixel-based features as
input. This is done because we want to test the general learning capabilities of our
algorithm on spatio-temporal patterns and much of the dynamic characteristics of these
patterns are lost if we extract explicit features.

5.2 System overview

For the experiments we use the Tulips Audiovisual database [40]. It contains gray-value
image-sequences of 12 persons pronouncing the first four digits 2 times. Thus in total
there are 96 video fragments, each consisting of 6 to 16 frames. In figure 5.1 two image
sequences are shown; one showing the pronunciation of the word ”one” and the other of
the word ”two”. The SNN should learn to distinguish these lip-stances and discover the
temporal structure among the frames.

Spiking neural networks can only be fed with spike-times, so we should first encode
every video into spike-trains. We do this by first converting every frame to a black and
white version and then coding these monochrome videos into spikes, see figure 5.3. This
conversion should be done in a sensible way to try to preserve salient information as
much as possible. We chose to invert the gray-value of every frame and then threshold
the result, so to keep only the dark mouth-opening, which gives a good description of the
stance of the mouth. With a threshold value of 205 most facial features are discarded

52

(a)

(b)

Figure 5.2: The thresholded versions of the two examples of figure 5.1 (the images are
not inverted for visual clarity). The black pixels in this figure had a low
gray-value in figure 5.1. As can be seen the information of the position of
the lips is preserved, although a lot of data is discarded.

while the mouth-opening is preserved. In figures 5.2(a)-(b), which are the thresholded
versions of figures 5.1(a)-(b) respectively, the stances of the lips are still discernible
although a lot of information is lost. Coding these monochrome image-sequences into
spike-trains is straightforward. For every pixel-location in the video we assign one spiking
neuron, see figure 5.3. The spike-train of that neuron is given by the times that that
neuron is white. The resolution of the videos in the data-set is 100 by 75, so each video
is converted to a set of 7500 spike-trains. Because we chose the thresholding value to be
rather high each video was coded in only 2500 spikes on average.

As can be seen the preprocessing is kept simple, so a lot of weight is put on the recognition
system, in our case an SNN. There is a lot of variation in the videos apart from the
different words that are uttered. The center of the mouth is generally not in the middle
of the images and between speakers there is big difference of the illumination. Also, the
length of the video varies a lot, from 6 frames to 16 frames. The SNN should learn to
generalize over these properties and only learn those features that are invariant for the
recognition of words.

5.3 Experiments

In the following subsections we will describe two experiments. The first is the classifica-
tion of the two digits ”one” and ”two”. The second task is somewhat more difficult: the
classifier has to learn all four digits and is tested on a new person that it has not seen
before.

53

t

1 2 3 4 5 6
t

1 2 3 4 5 6

F = {3, 4, 5}

Figure 5.3: In this overview the preprocessing of an image-sequence is shown and for
clarity one pixel-location is enlarged. First all frames of a gray-scale video
are transformed into monochrome video using thresholding. (The images are
not inverted for visual clarity.) Then all the pixel-locations are transformed
to spike-trains. The enlarged pixel-location has a small value for time t =
3, 4 and 5, so the spiking-neuron for that pixel-location will spike at those
times.

54

number of delays 20
initial weights [−10−5, 10−4]
learning-rate 10−5

stopping error 250

Table 5.1: Parameter settings for the lipreading task.

5.3.1 Classify ”one” and ”two”

In this task a spiking neural network has to learn to discriminate between the utterance
of the two digits ”one” and ”two”. There are 24 image-sequences for each of these classes
in the data-set, which are randomly split into a training-set and a test-set. Because the
number of patterns is quite low, we only use 4 patterns for the test-set and the remaining
44 as training-patterns. By repeating the experiments a lot of times with different test-
sets, we can ensure that there are enough tests for reliable results.

The network-output consists of only one spiking neuron that is trained to fire an early
spike at t̂ = 17 if an utterance of ”one” is fed to the network and a late spike at
t̂ = 24 if the input is of class ”two”. Each of the 7500 input-neurons is connected to
the output-neuron with 20 synapses with delays {1, 2, . . . , 20} ms. The weights were
randomly initialized between −10−5 and 10−4 and the learning-rate η was set to 10−5.
The training phase was stopped when the sum squared error dropped below 250 (see
table 5.1 for an overview of the parameter settings).

While doing the experiment we discovered that for some input-videos the output neuron
would not spike at all, because there were too few input-spikes, due to a brighter image-
sequence. The problem for the learning algorithm is that the error is undetermined if
there is no output-spike. Using larger initial weights, so that all input-patterns caused
an output-spike, did not counteract this problem, because the learning algorithm would
set the weights lower in order to correctly classify the patterns with an average number
of spikes. We fixed this by assigning an network error of 4.0 if there was no spike and
raising the weights a little.

After training, the evaluation of the output of the train- and test-patterns were done
as follows. If the output-spike was closer to the early spike-time (t < 20.5) then the
classification of the network was ”one” and if the output-spike was closer to the late
spike-time (t > 20.5) or there was no output-spike the classification of the network was
”two”. If the time of the output-spike was exactly in the middle (20.5), what sometimes
happened, a first order approximation of the potential around t = 20.5 was performed
to get a real valued approximation of the spike-time (as in [5]).

After 5.8 training-cycles, averaged over 100 experiments, the stopping-criterion was met
and 91% of the training-patterns was classified correctly. This number of training-cycles
is very low in comparison with other neural network studies [57, 24]. The test-set was
classified on average 75% correct.

55

(a)

(b)

Figure 5.4: An image-sequence of a pronunciation of ”one” that is very hard to classify.
(a) In the original gray-scale image there is hardly any information, because
the mouth opens only slightly. (b) Very few pixel are dark enough to be
converted to a spike-time.

Looking more closely at the outcome of the test phase, it became clear that some patterns
are very difficult and almost never correctly classified, while others are very easy. Partly
this has to do with differences of the number of spikes due to the variation in bright-
ness. Some of the image-sequences are very bright and thus have less dark pixel-values,
producing around a 1000 spikes, while others are coded in 5000 spikes. An example of a
pattern that is very difficult to classify, because it has so few spikes is depicted in figure
5.4.

We further investigated the influence of the learning-rate parameter η on the performance
of the network. Like in conventional neural networks using backpropagation it is difficult
to set this parameter to a sensible value, so it is important to see if this choice has a
big influence on the resulting classifier. In figure 5.5(a) can been seen that for a wide
range of values, from 10−6 to 10−1, the accuracy is the same, around 72% correct. Only
an extreme setting of the learning-rate will increase the error. As could be expected the
learning-parameter also has an effect on the training time of the algorithm, see figure
5.5(b). Sometimes the algorithm could not reach the stopping-criterion in a reasonable
number of cycles. This is caused by the slow convergence if a small learning-rate is used
and the bouncing-effect for large values, each time-step overshooting a local minimum.
To prevent very long training times, another stopping-criterion had to be used, stopping
the training-phase after 100 cycles.

For this lipreading task a wide range of values for the learning-rate parameter can be
used, without much influence on the performance. Thus the choice of the learning-
rate is not that important. And this is very important, because people without much
knowledge of SNNs and the given data-set that should be classified, require to set the
learning-parameters.

56

p
er

ce
n
t

co
rr

ec
t

75

70

65

60

80

55

10
−6

10
−4

10
−2

10
−0

learning-rate η

(a)

n
u
m

b
er

 o
f

cy
cl

es

100

90

80

70

60

50

40

20

10

0

30

10
−6

10
−4

10
−2

10
−0

learning-rate η

(b)

Figure 5.5: The influence of the learning-rate on the performance. (a) The dependence of
the error on the learning-rate; in a range of 10−6 to 10−1 the performance is
stable. (b) The dependence of the number of training-cycles on the learning-
rate; the learning-time is small if the learning-rate is in the range of 10−5 to
10−3.

”one”

”two”

”three”

”four”

”two”

Figure 5.6: In the second task the output of the network is produced by four output-
neurons, one for each digit. The neuron that fires first denotes the output of
the network; so in this case the output is ”two”.

5.3.2 Classify new person

The second task we tested the algorithm on is somewhat more complicated. The network
will be explicitly tested on its invariance of the speaker by training and testing on a
different set of persons. Also, in this task the whole data-set is used including the digits
”three” and ”four”. The date-set was split in a training- and test-set using the leave-one-
out method: training was performed on the pronunciations off 11 speakers, comprising
of 88 patterns, while the classifier was tested on the 8 image-sequences of the remaining
speaker. Repeating this procedure 12 times, each time with a different person in the
test-set, we get a reliable performance measure.

Because the output of the network consists of four classes the network architecture
consists of 4 output-neurons, one for each digit, see figure 5.6. For the training- and
testing-phase we will use the same scheme as for the Poisson spike-train benchmark
(section 3.4). The network is trained to let the output-neuron, representing the correct

57

digit fire an early spike (t̂ = 17), while the other output-neurons fire a late spike (t̂ = 24).
During the testing phase we only look at the neuron that fires the first spike and consider
the corresponding digit as the output of the network. Sometimes two output-neurons
fire at exactly the same time, so we use the same procedure as in the first experiment,
approximating the real spike-time using the potential around the spike-time.

The parameters are set to the same values as the first experiment (see table 5.1), except
for the stopping criteria. Because there are more output-neurons and training-patterns
the sum squared error is generally higher (see equation 3.17). So we raised the error-
threshold to 1500.

The number of cycles needed for the training-phase was only 6.25, averaged over the
12 runs. The network achieved a recognition-rate of 57% on the test-patterns that it
had not seen before. This result is not as good as the accuracy reported in studies of
specialized lipreading systems which range from 65.5% to 90.6% [26], but considering
that the system is not optimized for lipreading or video-classification in general, the
performance is quite good.

5.4 Conclusion

It is clear that the simple lipreading system using an SNN can perform a lipreading
task. But it is difficult to compare the results with other lipreading systems, because
these are highly optimized for this task, whereas our system is a very generic classifier.
The system we used could also be optimized for lipreading, by doing more preprocessing
on the video data and extract features that explicitly describe the stance of the lips
and tongue. By doing this the accuracy will undoubtedly improve for the task we are
considering. But that is not the goal of this study, which aims to provide a new way of
learning general temporal data.

Another thing that can be improved is the network architecture. When processing spatial
data, such as images and video, the system should take advantage of the local ordering of
the information. In neural networks this can be implemented by using so-called receptive
fields [12]; that is, there are one or more hidden-layers consisting of neurons that are
only connected to a small region of the input and thus process local information of that
region.

The important thing to conclude is that spiking neural networks can be used as video-
classifiers. The classifier can be learned to perform a specific task using the learning-rule
for spike-trains we developed. In this way we have developed a learnable classification
technique, that is very generic because of its use of a neural network.

58

6 Discussion and Conclusion

In this study we developed and tested a novel learning-rule for feedforward spiking
neural networks. It is now possible to apply an SNN on temporal data in the same way
as conventional neural networks are applied to static data using the backpropagation-
rule. This is an important step towards the integration of SNNs in intelligent systems
that have to process streaming data, such as audio and video.

6.1 The algorithm

We developed a learning algorithm that can be applied to spiking neurons that fire
multiple spikes and this makes it different to existing learning-rules, which limit the
spiking neurons to fire only once [50, 5]. We accomplished this by taking the previous
spikes into account when computing the error with respect to a new spike. In this way
the learning-rule has become a recursive function and must first be applied to the earliest
spike, then to the second and so on until the error is computed with respect to all spikes.
Although this seems to be a computationally intensive task, a lot of the factors that
have to be computed are shared among the spikes and can be computed in advance.

For the derivation of the learning-rule we used the gradient-descent method, which was
also used for the backpropagation-rule for conventional neural networks. Bohte uses the
same method for the development of his SpikeProp-rule and states that the discontinuous
nature of the spiking neuron has to be overcome [5, 4]. The problem is that the spiking
neuron uses a threshold function to compute its activation and the gradient descent
method would require the calculation of the derivative of this function, which can only
be done in approximation. This is the reason why conventional neural networks using the
backpropagation-rule need a continuous activation-function, like the sigmoid-function,
instead of a threshold function. We do not agree that this kind of linearization of the
threshold function is necessary for calculating a gradient descent rule for SNNs and we
did not use it in our derivation. Furthermore we do not think it is used in the SpikeProp-
rule either. In our opinion the linearization that is mentioned in [5] is related to the linear
direction of the gradient, which is common to all gradient descent methods. When using
precisely timed spikes the threshold function does not have to be approximated, because
the output of the neuron resides in the time domain, which is continuous. There is a
continuous mapping from the input-spikes and the strength of the presynaptic weights
to the time of the output-spike, so the gradient descent method can directly be applied.
However, caution must be taken with spikes that were produced by a potential that was
rising very slowly when passing the threshold. For this special case we incorporated

59

an ad hoc rule to counteract problems with the learning algorithm. We suspect that
the SpikeProp rule can also learn more stable and more efficient if such a technique is
applied.

The functionality of the learning algorithm is first of all shown by the ability to classify
artificially generated Poisson spike-trains with a one-layered network. The ease with
which this is done is encouraging, but also makes us realize that this benchmark is too
simple for a good evaluation of the algorithm. Further testing should be conducted using
temporal patterns that are more closely correlated among the classes. For example, in
[42] patterns are created by combining segments of different Poison spike-trains. Be-
cause patterns can then contain the same segments but in a different recombination, the
patterns are locally the same, but on the whole different. The algorithm could be better
evaluated using these kind of experiments.

An SNN with two layers of weights was successfully applied on a few standard non-linear
benchmarks: the Exclusive-OR (XOR) function with and without noise and the Parity-
3 function. The aim of these experiments was to show that an SNN with more then
one layer could indeed solve non-linear tasks, as opposed to one-layered networks that
had problems solving them. Again, it must be noted that further testing is required
to evaluate the performance of the algorithm on non-linear tasks. The most important
problem domain on which we did not experiment is the classification of non-linear tem-
poral patterns, while our learning algorithm using a multi-layered SNN should be very
well suited for these kinds of tasks.

6.2 Lipreading

To test the algorithm on artificially generated tasks is fairly easy, because the amount
of noise can be controlled and the number of test-patterns is boundless. It is important
to perform such experiments as a first evaluation, but to really determine the qualities
of the algorithm we had to apply it on a real-world problem.

We chose to do this on the problem of lipreading, learning to recognize spoken words out
of video-fragments. A big obstacle in this task, like all tasks involving the processing
of video-data, is the high dimension of the input. Previous methods overcame this
problem by doing a lot of preprocessing, or feature-extraction, usually using a lot of prior
knowledge of the specific domain [56]. We used only minimal preprocessing, feeding the
SNN with almost raw video-data. Thus the network had to tune a lot of parameters
in order to correctly classify the training data. This brings a big risk of overfitting
the data and performing miserably on the test data. The results were however very
acceptable, although not as good as the systems specially designed for lipreading. There
is certainly room for improvement, not only by incorporating prior knowledge of the
lipreading domain but also by improving the general capability of processing video-data.

One thing that certainly needs improvement is the encoding method for transforming
video-data into spike-trains. In our experiments we thresholded the analog data-streams

60

per pixel-location. Such a technique however does not produce very satisfying spike-
trains. The ideal encoding would distribute the information of a given video-stream
in an evenly manner over all spike-times of all spike-trains, respecting the spatial and
temporal ordering of the data [47]. The firing-times would then be independent of each
other; that is, the information they carry would be orthogonal, just like the Poisson
spike-trains. A possible way to approach this goal would be to use receptive fields of
spiking neurons. This is already done for static images and proved very successful [12, 4].
If this could be extended with receptive fields that are sensitive to changes in time rather
then in space, it would be possible to improve the encoding of video-data. Of course
this requires a lot of extra study and is an issue for future work.

Our lipreading-system shows that spiking neural networks can indeed be used for prac-
tical applications involving the processing of temporal data. These applications, no
matter how simple, are usually performed by applying an expert-system specially de-
signed for the task and thus requiring a lot of domain-specific knowledge. The SNN
method however can be considered as a black-box, like conventional neural networks,
that can perform general pattern recognition tasks.

6.3 Computational power

During our study on the learning of SNNs, we also investigated the computational power
of SNNs in general. In addition to what was already known, namely that they are more
powerful than conventional neural networks [30], we have shown that a one-layered
SNN can solve the notorious XOR-problem, while this was taken to be impossible [5].
Although the XOR-function is by itself not very special, it occupies a special position
in the history of neural network research. It is the simplest non-linear function that
can not be computed by a one-layered conventional neural network [51]. The fact that
one-layered SNNs can solve this function should be of considerable interest to the neural
network community. It underlines the power of computing with the new spiking neural
network models as opposed to the conventional neural network paradigms.

6.4 Future work

The use of spiking neural networks as a computational tool is a relatively recent de-
velopment. It is not surprising that a lot of work still needs to be done before SNNs
will become a common tool; for example, that it will be incorporated in the Matlab
Neural Network Toolbox. The most important aspect that has to be improved is the
coding-scheme for transforming data-streams into spike-trains, as discussed in section 6.2
regarding the lipreading application. Besides video-data, there is also need for suitable
coding-schemes for other dynamic data such as positional data from tracking systems
and audio data.

61

∑ ∑

∑

∑

Figure 6.1: An example recurrent network architecture. The two neurons in the middle
are connected in both directions, leading to a loop in the network.

Focusing on the developed learning algorithm, there are numerous possibilities of fur-
ther research. For example applying the algorithm on other network architectures than
the feedforward structure we used. The algorithm can in principle train all kinds of
networks, including recurrent architectures, see figure 6.1. Supervised learning-rules for
conventional neural networks did not have this ability, because in a recurrent structure
it is impossible to perform backpropagation of the error; it would be unclear if a specific
neurons state is the cause or the effect of another neurons state. For SNNs this prob-
lem does not exist because the state of a spiking neuron can only influence the state of
another neuron in the future. By using a recurrent architecture the network could learn
to remember certain information for as long as it needs, which could be helpful to find
temporal correlations that happen on a large or variable time-scale.

Other research could aim at extending the algorithm in analogue with well-tested ex-
tensions of the conventional backpropagation-rule. For example, the efficiency could
be improved by introducing a momentum term in the learning-rule, which is already
attempted for the SpikeProp algorithm [61]. Or the algorithm could be changed more
drastically in accordance with the QuickProp method [15], to improve the performance
even more.

It is our hope that the introduction of our learning algorithm will contribute to the field
of spiking neural networks and not only lead to more research as suggested here, but
also to a wider use on practical applications such as lipreading.

62

Bibliography

[1] W. Bialek, F. Rieke, R.R. de Ruyter van Steveninck, and D. Warland. Reading a
neural code. Science, 252:1854–1857, 1991.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995.

[3] S. M. Bohte. The evidence for neural information processing with precise spike-
times: A survey. Natural Computing, 3(2):195–206, 2004.

[4] S.M. Bohte. Spiking Neural Networks. PhD thesis, Universiteit Leiden, 2003. Avail-
able from http://homepages.cwi.nl/˜sbohte/publications2.htm.

[5] S.M. Bohte, J.N. Kok, and H. La Poutré. Error-backpropagation in temporally
encoded networks of spiking neurons. Technical report, CWI Technical Report
SEN-R0037, 2000. Available from http://db.cwi.nl/rapporten.

[6] S.M. Bohte, H. La Poutré, and J.N. Kok. Unsupervised clustering with spiking neu-
rons by sparse temporal coding and multi-layer rbf networks. Technical report, CWI
Technical Report SEN-R0036, 2000. Available from http://db.cwi.nl/rapporten.

[7] N. K. Bose and P. Liang. Neural network fundamentals with graphs, algorithms,
and applications. McGraw-Hill, Inc., Hightstown, NJ, USA, 1996.

[8] C. Bregler, S. Manke, H. Hild, and A. Waibel. Improving connected letter recog-
nition by lipreading. In Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (IEEE-ICASSP), pages 557–560, Minneapolis, MN,
1993. IEEE Press.

[9] C. Bregler and S. M. Omohundro. Nonlinear manifold learning for visual speech
recognition. In Proceedings of the Fifth International Conference on Computer
Vision, pages 494–499. IEEE Computer Society, 1995.

[10] T. Chen. Audiovisual speech processing, lip reading and lip synchronization. IEEE
Signal Processing Magazine, pages 8–21, 2001.

[11] T. Chen and R. Rao. Audio-visual integration in multimodal communications. In
Proceedings of IEEE, Special Issue on Multimedia Signal Processing, pages 837–852,
1998. volume 86, no. 5.

63

[12] A. Delorme and S. Thorpe. Face processing using one spike per neuron: resistance
to image degradation. Neural Networks, 14(6-7):795–804, 2001.

[13] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, New York,
2001.

[14] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[15] S. E. Fahlman. An empirical study of learning speed in back-propagation networks.
Technical Report CMU-CS-88-162, Carnegie Mellon, 1988.

[16] W. Gerstner. Spiking neurons. In W. Maass and C. M. Bisop, editors, Pulsed Neural
Networks, pages 3–54. MIT Press (Cambridge), 1999.

[17] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner. A neuronal learning
rule for sub-millisecond temporal coding. Nature, 384:76–78, 1996.

[18] W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity. Cambridge University Press, 2002.

[19] D. Heeger. Poisson model of spike generation, 2000. Available from
http://www.cns.nyu.edu/˜david/ftp/handouts/.

[20] J. J. Hopfield. Pattern recognition computation using action potential timing for
stimulus representation. Nature, 376:33–36, 1995.

[21] R. Kempter, W. Gerstner, and J.L. van Hemmen. Hebbian learning and spiking
neurons. Physical Review E, 59(4):4498–4514, 1999.

[22] C. Koch and I. Segev, editors. Methods in Neuronal Modeling, from synapses to
networks. MIT Press, Cambridge, 1989.

[23] M.S. Lewicki. Efficient coding of natural sounds. Nature Neuroscience, 5(4):356–
363, 2002.

[24] W. C. Lin. A space-time delay neural network for motion recognition and its ap-
plication to lipreading in bimodal speech recognition. Master’s thesis, National
Chiao-Tung University, Taiwan, 1996.

[25] L.Torres, L.Lorente, and J. Vila. Automatic face recognition of video sequences
using self-eigenfaces. In International Symposium on Image/video Communication
over Fixed and Mobile Networks, Rabat(Morocco), 2000.

[26] J. Luettin and N. A. Thacker. Speechreading using probabilistic models. Computer
Vision and Image Understanding, 65(2):163–178, 1997.

[27] J. Luettin, N. A. Thacker, and S. W. Beet. Locating and tracking facial speech
features. In Proceedings of the International Conference on Pattern Recognition
(ICPR’96), volume I, pages 652–656. IAPR, 1996.

64

[28] W. Maass. Lower bounds for the computational power of networks of spiking neu-
rons. Neural Computation, 8(1):1–40, 1996.

[29] W. Maass. Networks of spiking neurons: the third generation of neural network
models. Neural Networks, 10(9):1541–1741, 1997.

[30] W. Maass. Noisy spiking neurons with temporal coding have more computational
power than sigmoidal neurons. In M. Mozer, M. I. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems, volume 9, pages 211–217. MIT
Press, Cambridge, MA, 1997.

[31] W. Maass. Computing with spiking neurons. In W. Maass and C. M. Bishop,
editors, Pulsed Neural Networks, pages 55–85. MIT Press (Cambridge), 1999.

[32] W. Maass and C. M. Bishop, editors. Pulsed Neural Networks. MIT Press, Cam-
bridge, 1999.

[33] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation, 14(11):2531–2560, 2002.

[34] W. Maass, T. Natschläger, and H. Markram. A model for real-time compu-
tation in generic neural microcircuits. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Proc. of NIPS 2002, Advances in Neural Information Process-
ing Systems, volume 15, pages 229–236. MIT Press, 2003. Available from
http://www.cis.tugraz.at/igi/maass/publications.html.

[35] W. Maass and T. Natschlger. Emulation of hopfield networks with spiking neurons
in temporal coding. In J. M. Bower, editor, Computational Neuroscience: Trends
in Research, pages 221–226. Plenum Press, 1998.

[36] W. Maass and M. Schmitt. On the complexity of learning for spiking neurons with
temporal coding. Information and Computation, 153:26–46, 1999.

[37] R.J. MacGregor. Neural and Brain Modeling. Academic Press, San Diego, 1987.

[38] J. L. McClelland, D. E. Rumelhart, and the PDP Research Group, editors. Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Volume 2:
Psychological and Biological Models. MIT Press, Cambridge, MA, 1986.

[39] U. Meier, R. Stiefelhagen, J. Yang, and A. Waibel. Towards unrestricted lip reading.
International Journal of Pattern Recognition and Artificial Intelligence, 14(5):571–
585, 2000.

[40] J. Movellan. Visual speech recognition with stochastic networks. In G. Tesauro,
D. Toruetzky, and T. Leen, editors, Advances in Neural Information Processing
Systems, volume 7, pages 851–858. MIT Press, Cambridge, 1995.

65

[41] R. Mueller and A. V. M. Herz. Content-addressable memory with spiking neurons.
Physical Review E, 59(3):3330–3338, 1999.

[42] T. Natschläger and W. Maass. Information dynamics and emergent computation
in recurrent circuits of spiking neurons. In Sebastian Thrun, Lawrence Saul, and
Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems
16. MIT Press, Cambridge, MA, 2004.

[43] T. Natschläger and B. Ruf. Spatial and temporal pattern analysis via spiking
neurons. Network: Computation in Neural Systems, 9(2):319–332, 1998.

[44] A. Pouget, R.S. Zemel, and P. Dayan. Information processing with population
codes. Nature Review Neuroscience, 1(2):125–1–32, 2000.

[45] K.V. Prasad, D.G. Stork, and G.J. Wolff. Prepocessing video images for neural
learning of lipreading. Technical report, Ricoh California Research Center, Technical
Report CRC-TR-93-26, 1993.

[46] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Readings in speech recognition, pages 267–296, 1990.

[47] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek. Spike: Exploring
the Neural Code. Computational Neurosciences. MIT Press, Cambridge, 1997.

[48] Fitzsimonds R.M., Song H-J., and Poo M-M. Propagation of activity-dependent
synaptic depression in simple neural networks. Nature, 388:439–448, 1997.

[49] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, Washington, 1962.

[50] B. Ruf and M. Schmitt. Hebbian learning in networks of spiking neurons using tem-
poral coding. In J. Mira, R. Moreno-Diaz, and J. Cabestany, editors, Biological and
artificial computation: From neuroscience to technology, pages 380–389. Springer,
Berlin, 1997. volume 1240 of Lecture Notes in Computer Science.

[51] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors. Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations. MIT Press, Cambridge, MA, 1986.

[52] B. Schrauwen. Pulstreincodering en training met meerdere datasets op de cbm.
Master’s thesis, Ghent University, 2002.

[53] T. J. Sejnowski and C. R. Rosenberg. Nettalk: A parallel network that learns to
read aloud. In J. A. Anderson and E. Rosenfeld, editors, Neurocomputing. MIT
Press, Cambridge, MA, 1988.

[54] J.-W. Sohn, B.-T. Zhang, and B.-K. Kaang. Temporal pattern recognition using a
spiking neural network with delays. In Proceedings of Internationl Joint Conference
on Neural Network (IJCNN’99), pages 2590–2593, 1999. volume 4.

66

[55] J. Storck, F. Jkel, and G. Deco. Temporal clustering with spiking neurons and
dynamic synapses: towards technological applications. Neural Networks, 14(3):275–
285, April 2001.

[56] D. G. Stork and M. E. Henneck, editors. Speechreading by Man and Machine: Data,
Models and Systems. NATO/Springer-Verlag, New York, NY, 1996.

[57] D. G. Stork, G. Wolff, and E. Levine. A neural network lipreading system for
improved speech recognition. In Proceedings of the 1992 International Joint Con-
ference on Neural Networks, pages 285–295, Baltimore, MD, 1992.

[58] S. Thorpe, A. Delorme, and R. Van Rullen. Spike-based strategies for rapid pro-
cessing. Neural Networks, 14(6-7):715–725, 2001.

[59] S.J. Thorpe, A. Delorme, R. VanRullen, and W. Paquier. Reverse engineering of the
visual system using networks of spiking neurons. IEEE International Symposium
on Circuits and Systems, 4:405–408, 2000.

[60] J.C. Wojdel and L.J.M. Rothkrantz. Using artificial neural networks in lip-reading.
In Proceedings of 7th annual conference of the Advanced School for Computing and
Imaging (ASCI 2001), The Netherlands, 2001. Heijen.

[61] Jianguo Xin and M. J. Embrechts. Supervised learning with spiking neuron net-
works. In Proceedings IEEE International Joint Conference on Neural Networks,
IJCNN01, Washington D.C., July 2001.

[62] X. Zhang, R. M. Mersereau, M. A. Clements, and C. C. Broun. Visual speech feature
extraction for improved speech recognition. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (IEEE-ICASSP), Orlando,
2002.

67

